Building Synthetic Cells─From the Technology Infrastructure to Cellular Entities

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS ACS Synthetic Biology Pub Date : 2024-03-26 DOI:10.1021/acssynbio.3c00724
Lynn J. Rothschild*, Nils J. H. Averesch, Elizabeth A. Strychalski, Felix Moser, John I. Glass, Rolando Cruz Perez, Ibrahim O. Yekinni, Brooke Rothschild-Mancinelli, Garrett A. Roberts Kingman, Feilun Wu, Jorik Waeterschoot, Ion A. Ioannou, Michael C. Jewett, Allen P. Liu, Vincent Noireaux, Carlise Sorenson and Katarzyna P. Adamala, 
{"title":"Building Synthetic Cells─From the Technology Infrastructure to Cellular Entities","authors":"Lynn J. Rothschild*,&nbsp;Nils J. H. Averesch,&nbsp;Elizabeth A. Strychalski,&nbsp;Felix Moser,&nbsp;John I. Glass,&nbsp;Rolando Cruz Perez,&nbsp;Ibrahim O. Yekinni,&nbsp;Brooke Rothschild-Mancinelli,&nbsp;Garrett A. Roberts Kingman,&nbsp;Feilun Wu,&nbsp;Jorik Waeterschoot,&nbsp;Ion A. Ioannou,&nbsp;Michael C. Jewett,&nbsp;Allen P. Liu,&nbsp;Vincent Noireaux,&nbsp;Carlise Sorenson and Katarzyna P. Adamala,&nbsp;","doi":"10.1021/acssynbio.3c00724","DOIUrl":null,"url":null,"abstract":"<p >The <i>de novo</i> construction of a living organism is a compelling vision. Despite the astonishing technologies developed to modify living cells, building a functioning cell “from scratch” has yet to be accomplished. The pursuit of this goal alone has─and will─yield scientific insights affecting fields as diverse as cell biology, biotechnology, medicine, and astrobiology. Multiple approaches have aimed to create biochemical systems manifesting common characteristics of life, such as compartmentalization, metabolism, and replication and the derived features, evolution, responsiveness to stimuli, and directed movement. Significant achievements in synthesizing each of these criteria have been made, individually and in limited combinations. Here, we review these efforts, distinguish different approaches, and highlight bottlenecks in the current research. We look ahead at what work remains to be accomplished and propose a “roadmap” with key milestones to achieve the vision of building cells from molecular parts.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.3c00724","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The de novo construction of a living organism is a compelling vision. Despite the astonishing technologies developed to modify living cells, building a functioning cell “from scratch” has yet to be accomplished. The pursuit of this goal alone has─and will─yield scientific insights affecting fields as diverse as cell biology, biotechnology, medicine, and astrobiology. Multiple approaches have aimed to create biochemical systems manifesting common characteristics of life, such as compartmentalization, metabolism, and replication and the derived features, evolution, responsiveness to stimuli, and directed movement. Significant achievements in synthesizing each of these criteria have been made, individually and in limited combinations. Here, we review these efforts, distinguish different approaches, and highlight bottlenecks in the current research. We look ahead at what work remains to be accomplished and propose a “roadmap” with key milestones to achieve the vision of building cells from molecular parts.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建合成细胞--从技术基础设施到细胞实体。
从头构建一个活的有机体是一个引人注目的愿景。尽管改造活细胞的技术令人惊叹,但 "从零开始 "构建一个功能正常的细胞仍有待实现。单是对这一目标的追求就已经--并将--产生影响细胞生物学、生物技术、医学和天体生物学等不同领域的科学见解。多种方法都旨在创造出能够体现生命共同特征的生化系统,如分隔、新陈代谢、复制以及衍生特征、进化、对刺激的反应能力和定向运动。在综合这些标准方面,已经取得了重大成就,无论是单独还是有限的组合。在此,我们将回顾这些努力,区分不同的方法,并强调当前研究的瓶颈。我们展望了有待完成的工作,并提出了一个 "路线图",其中包括实现从分子部件构建细胞这一愿景的关键里程碑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
期刊最新文献
Efficient Strategy for Synthesizing Vector-Free and Oncolytic Herpes Simplex Type 1 Viruses. One-Pot Assay for Rapid Detection of Stenotrophomonas maltophilia by RPA-CRISPR/Cas12a. Correction to "Cell-Free Gene Expression Dynamics in Synthetic Cell Populations". The Potential of Artificial Cells Functioning under In Situ Deep-Sea Conditions. Disentangling the Regulatory Response of Agrobacterium tumefaciens CHLDO to Glyphosate for Engineering Whole-Cell Phosphonate Biosensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1