Directed Surface Reconstruction of Fe Modified Co2VO4 Spinel Oxides for Water Oxidation Catalysts Experiencing Self-Terminating Surface Deterioration

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-03-26 DOI:10.1002/adma.202401818
Ang Li, Xiaoxia Tang, Runjie Cao, Dongcai Song, Fangzheng Wang, Hua Yan, Hongmei Chen, Zidong Wei
{"title":"Directed Surface Reconstruction of Fe Modified Co2VO4 Spinel Oxides for Water Oxidation Catalysts Experiencing Self-Terminating Surface Deterioration","authors":"Ang Li,&nbsp;Xiaoxia Tang,&nbsp;Runjie Cao,&nbsp;Dongcai Song,&nbsp;Fangzheng Wang,&nbsp;Hua Yan,&nbsp;Hongmei Chen,&nbsp;Zidong Wei","doi":"10.1002/adma.202401818","DOIUrl":null,"url":null,"abstract":"<p>Affordable highly efficient catalysts for electrochemical oxygen evolution reaction (OER) play pivotal roles in green hydrogen production via water electrolysis. Regarding the non-noble metal-based electrocatalysts, considerable efforts are made to decipher the cation leaching and surface reconstruction; yet, little attention is focused on correlating them with catalytical activity and stability. Herein, in situ reconstruction of Fe-modified Co<sub>2</sub>VO<sub>4</sub> precursor catalyst to form a highly active (Fe,V)-doped CoOOH phase for OER is reported, during which partial leaching of V accelerates the surface reconstruction and the V reserved in the reconstructed CoOOH layer in the form of alkali-resistant V<sub>2</sub>O<sub>3</sub> serves for dynamic charge compensation and prevention of excessive loss of lattice oxygen and Co dissolution. Fe substitution facilitates Co pre-oxidation and endows the catalysts with structural flexibility by elevating O 2p band level; hence, encouraging participation of lattice oxygen in OER. The optimized Co<sub>2</sub>Fe<sub>0.25</sub>V<sub>0.75</sub>O<sub>4</sub> electrode can afford current densities of 10 and 500 mA cm<sup>−2</sup> at low overpotentials of 205 and 320 mV, respectively, with satisfactory stability over 600 h. By coupling with Pt/C cathode, the assembled alkaline electrolyzer can deliver 500 mA cm<sup>−2</sup> at a low cell voltage of 1.798 V, better than that of commercial RuO<sub>2</sub> (+) || Pt/C (−).</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202401818","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Affordable highly efficient catalysts for electrochemical oxygen evolution reaction (OER) play pivotal roles in green hydrogen production via water electrolysis. Regarding the non-noble metal-based electrocatalysts, considerable efforts are made to decipher the cation leaching and surface reconstruction; yet, little attention is focused on correlating them with catalytical activity and stability. Herein, in situ reconstruction of Fe-modified Co2VO4 precursor catalyst to form a highly active (Fe,V)-doped CoOOH phase for OER is reported, during which partial leaching of V accelerates the surface reconstruction and the V reserved in the reconstructed CoOOH layer in the form of alkali-resistant V2O3 serves for dynamic charge compensation and prevention of excessive loss of lattice oxygen and Co dissolution. Fe substitution facilitates Co pre-oxidation and endows the catalysts with structural flexibility by elevating O 2p band level; hence, encouraging participation of lattice oxygen in OER. The optimized Co2Fe0.25V0.75O4 electrode can afford current densities of 10 and 500 mA cm−2 at low overpotentials of 205 and 320 mV, respectively, with satisfactory stability over 600 h. By coupling with Pt/C cathode, the assembled alkaline electrolyzer can deliver 500 mA cm−2 at a low cell voltage of 1.798 V, better than that of commercial RuO2 (+) || Pt/C (−).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁改性 Co2VO4 尖晶石氧化物的定向表面重构,用于自终止表面劣化的水氧化催化剂。
价格合理的高效电化学氧进化反应(OER)催化剂在通过电解水进行绿色制氢中发挥着举足轻重的作用。关于非贵金属基电催化剂,人们已经在阳离子浸出和表面重构方面做出了大量努力,但很少有人关注它们与催化活性和稳定性之间的关系。本文报告了原位重构铁改性 Co2VO4 前驱体催化剂以形成用于 OER 的高活性(铁、钒)掺杂 CoOOH 相的情况,在此过程中,钒的部分浸出加速了表面重构,重构的 CoOOH 层中保留的钒以耐碱 V2O3 的形式存在,用于动态电荷补偿和防止晶格氧的过度损失及钴的溶解。铁的取代有利于钴的预氧化,并通过提高 O 2p 带电平赋予催化剂结构的灵活性,从而促进晶格氧参与 OER。优化的 Co2Fe0.25V0.75O4 电极在 205 mV 和 320 mV 的低过电位下分别能提供 10 mA 和 500 mA cm-2 的电流密度,并能在 600 h 内保持令人满意的稳定性。通过与 Pt/C 阴极耦合,组装的碱性电解槽能在 1.798 V 的低电池电压下提供 500 mA cm-2 的电流密度,优于商用 RuO2 (+) || Pt/C (-)。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Advances in the Catalytic Conversion of Ethanol into Nonoxygenated Added-Value Chemicals. Biomedical-Optical-Window Tailored Cyanines for Steerable Inflammatory Bowel Disease Theranostic. Buried Interface Strategies with Covalent Organic Frameworks for High-Performance Inverted Perovskite Solar Cells. Complex Deformation in Soft Cylindrical Structures via Programmable Sequential Instabilities. Hybrid Passive Cooling for Power Equipment Enabled by Metal-Organic Framework.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1