Brain-Thymus Connections in Chagas Disease.

IF 2.2 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM Neuroimmunomodulation Pub Date : 2024-01-01 Epub Date: 2024-04-09 DOI:10.1159/000538220
Florencia Belén González, Wilson Savino, Ana Rosa Pérez
{"title":"Brain-Thymus Connections in Chagas Disease.","authors":"Florencia Belén González, Wilson Savino, Ana Rosa Pérez","doi":"10.1159/000538220","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The brain and the immune systems represent the two primary adaptive systems within the body. Both are involved in a dynamic process of communication, vital for the preservation of mammalian homeostasis. This interplay involves two major pathways: the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system.</p><p><strong>Summary: </strong>The establishment of infection can affect immunoneuroendocrine interactions, with functional consequences for immune organs, particularly the thymus. Interestingly, the physiology of this primary organ is not only under the control of the central nervous system (CNS) but also exhibits autocrine/paracrine regulatory circuitries mediated by hormones and neuropeptides that can be altered in situations of infectious stress or chronic inflammation. In particular, Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), impacts upon immunoneuroendocrine circuits disrupting thymus physiology. Here, we discuss the most relevant findings reported in relation to brain-thymic connections during T. cruzi infection, as well as their possible implications for the immunopathology of human Chagas disease.</p><p><strong>Key messages: </strong>During T. cruzi infection, the CNS influences thymus physiology through an intricate network involving hormones, neuropeptides, and pro-inflammatory cytokines. Despite some uncertainties in the mechanisms and the fact that the link between these abnormalities and chronic Chagasic cardiomyopathy is still unknown, it is evident that the precise control exerted by the brain over the thymus is markedly disrupted throughout the course of T. cruzi infection.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimmunomodulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000538220","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The brain and the immune systems represent the two primary adaptive systems within the body. Both are involved in a dynamic process of communication, vital for the preservation of mammalian homeostasis. This interplay involves two major pathways: the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system.

Summary: The establishment of infection can affect immunoneuroendocrine interactions, with functional consequences for immune organs, particularly the thymus. Interestingly, the physiology of this primary organ is not only under the control of the central nervous system (CNS) but also exhibits autocrine/paracrine regulatory circuitries mediated by hormones and neuropeptides that can be altered in situations of infectious stress or chronic inflammation. In particular, Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), impacts upon immunoneuroendocrine circuits disrupting thymus physiology. Here, we discuss the most relevant findings reported in relation to brain-thymic connections during T. cruzi infection, as well as their possible implications for the immunopathology of human Chagas disease.

Key messages: During T. cruzi infection, the CNS influences thymus physiology through an intricate network involving hormones, neuropeptides, and pro-inflammatory cytokines. Despite some uncertainties in the mechanisms and the fact that the link between these abnormalities and chronic Chagasic cardiomyopathy is still unknown, it is evident that the precise control exerted by the brain over the thymus is markedly disrupted throughout the course of T. cruzi infection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
南美锥虫病中的脑-hymus 连接。
背景:大脑和免疫系统是人体内两个主要的适应系统。两者都参与了一个动态的交流过程,对维持哺乳动物的平衡至关重要。这种相互作用涉及两个主要途径:下丘脑-垂体-肾上腺(HPA)轴和交感神经系统(SNS)。摘要:感染的建立会影响免疫-神经-内分泌的相互作用,从而对免疫器官,尤其是胸腺产生功能性影响。有趣的是,这一主要器官的生理机能不仅受中枢神经系统(CNS)的控制,而且还表现出由激素和神经肽介导的自分泌/旁分泌调节回路,这些回路在感染压力或慢性炎症的情况下会发生改变。特别是由原生寄生虫克鲁斯锥虫引起的南美锥虫病会影响免疫神经内分泌回路,破坏胸腺的生理机能。在此,我们将讨论有关克鲁兹锥虫感染期间大脑与胸腺联系的最相关研究结果,以及它们对人类恰加斯病免疫病理学可能产生的影响:在克鲁兹锥虫感染期间,中枢神经系统通过涉及激素、神经肽和促炎细胞因子的复杂网络影响胸腺生理。尽管这些机制还存在一些不确定性,而且这些异常与 CCC 之间的联系仍不清楚,但显而易见的是,在整个克鲁兹锥虫感染过程中,大脑对胸腺的精确控制受到了明显干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroimmunomodulation
Neuroimmunomodulation 医学-免疫学
CiteScore
3.60
自引率
4.20%
发文量
35
审稿时长
>12 weeks
期刊介绍: The rapidly expanding area of research known as neuroimmunomodulation explores the way in which the nervous system interacts with the immune system via neural, hormonal, and paracrine actions. Encompassing both basic and clinical research, ''Neuroimmunomodulation'' reports on all aspects of these interactions. Basic investigations consider all neural and humoral networks from molecular genetics through cell regulation to integrative systems of the body. The journal also aims to clarify the basic mechanisms involved in the pathogenesis of the CNS pathology in AIDS patients and in various neurodegenerative diseases. Although primarily devoted to research articles, timely reviews are published on a regular basis.
期刊最新文献
A history of psycho-neuro-endocrine immune interactions in rheumatic diseases. STEERING THE MICROBIOTA-GUT-BRAIN AXIS BY ANTIBIOTICS TO MODEL NEURO-IMMUNE-ENDOCRINE DISORDERS. Serum levels of the steroid hormone dehydroepiandrosterone (DHEA) are associated with psychological trauma and lymphocyte telomere integrity in women suffering from depression. Sympathetic-Immune Interactions during Different Types of Immune Challenge. Thymic Innervation Impairment in Experimental Autoimmune Encephalomyelitis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1