David M. Rubin , Olivier Rozier , Clément Narteau , Sylvain Courrech du Pont
{"title":"Simulations of dune morphology under tri-directional wind regimes and application to dunes on Mars","authors":"David M. Rubin , Olivier Rozier , Clément Narteau , Sylvain Courrech du Pont","doi":"10.1016/j.aeolia.2024.100922","DOIUrl":null,"url":null,"abstract":"<div><p>Dune morphology was simulated using coupled models of wind flow and sand transport for 4728 tri-directional wind regimes and bed conditions. The dominant control of dune morphology is sand coverage on the bed. Dunes on a fully sand-covered bed tend to form a periodic pattern of long crests with a relatively uniform spacing. In contrast, dunes on a starved bed have greater diversity of crest orientations and shapes, including complex shapes that have not been simulated or observed in bidirectional wind regimes. These specific dune shapes resulting from the tri-directional wind regime persist regardless of whether the transport capacity of the weakest wind is comparable to or only 1/10th that of the dominant wind.</p><p>On sand-covered beds, dunes generally have only a single modal orientation (approximately that with maximum gross bedform-normal transport). The exceptions are where two strong winds diverge by 90° (two dune orientations arise), where three winds have triradial symmetry (three dune orientations), or winds have modest deviations from triradial symmetry (two dune orientations).</p><p>On a starved bed, increasing the divergence angle between two strong winds produces a highly generalized sequence of: barchan dunes (divergence angle ∼30° between the two dominant winds), squat barchans or domes (divergence angle of ∼60°), dunes with two or three crest orientations (divergence angles ∼90° or 120°), to slug-shaped or boomerang-shaped dunes (divergence angle 180°, i.e., reversing winds). The simulated morphologies include a wide variety of Martian dune shapes, which allows their formative wind regimes to be inferred.</p></div>","PeriodicalId":49246,"journal":{"name":"Aeolian Research","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1875963724000338/pdfft?md5=b92477c20eb1555d01d08ef350ca4532&pid=1-s2.0-S1875963724000338-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeolian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875963724000338","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dune morphology was simulated using coupled models of wind flow and sand transport for 4728 tri-directional wind regimes and bed conditions. The dominant control of dune morphology is sand coverage on the bed. Dunes on a fully sand-covered bed tend to form a periodic pattern of long crests with a relatively uniform spacing. In contrast, dunes on a starved bed have greater diversity of crest orientations and shapes, including complex shapes that have not been simulated or observed in bidirectional wind regimes. These specific dune shapes resulting from the tri-directional wind regime persist regardless of whether the transport capacity of the weakest wind is comparable to or only 1/10th that of the dominant wind.
On sand-covered beds, dunes generally have only a single modal orientation (approximately that with maximum gross bedform-normal transport). The exceptions are where two strong winds diverge by 90° (two dune orientations arise), where three winds have triradial symmetry (three dune orientations), or winds have modest deviations from triradial symmetry (two dune orientations).
On a starved bed, increasing the divergence angle between two strong winds produces a highly generalized sequence of: barchan dunes (divergence angle ∼30° between the two dominant winds), squat barchans or domes (divergence angle of ∼60°), dunes with two or three crest orientations (divergence angles ∼90° or 120°), to slug-shaped or boomerang-shaped dunes (divergence angle 180°, i.e., reversing winds). The simulated morphologies include a wide variety of Martian dune shapes, which allows their formative wind regimes to be inferred.
期刊介绍:
The scope of Aeolian Research includes the following topics:
• Fundamental Aeolian processes, including sand and dust entrainment, transport and deposition of sediment
• Modeling and field studies of Aeolian processes
• Instrumentation/measurement in the field and lab
• Practical applications including environmental impacts and erosion control
• Aeolian landforms, geomorphology and paleoenvironments
• Dust-atmosphere/cloud interactions.