Investigation of effects of hazard geometry and mitigation strategies on community resilience under tornado hazards using an Agent-based modeling approach
{"title":"Investigation of effects of hazard geometry and mitigation strategies on community resilience under tornado hazards using an Agent-based modeling approach","authors":"Xu Han , Maria Koliou","doi":"10.1016/j.rcns.2024.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>A large number of communities are impacted annually by the increasing frequency of tornado hazards resulting in damage to the infrastructure as well as disruption of community functions. The effect of the hazard geometry (center and angle of tornado path as well as the tornado width) is studied herein on how it influences the recovery of physical and social systems within the community. Given that pre-disaster preparedness including mitigation strategies (e.g., retrofits) and policies (e.g., insurance) is crucial for increasing the resilience of the community and facilitating a faster recovery process, in this study, the impact of various mitigation strategies and policies on the recovery trajectory and resilience of a typical US community subjected to a tornado is investigated considering different sources of uncertainties. The virtual testbed of Centerville is selected in this paper and is modeled by adopting the Agent-based modeling (ABM) approach which is a powerful tool for conducting community resilience analysis that simulates the behavior of different types of agents and their interactions to capture their interdependencies. The results are presented in the form of recovery time series as well as calculated resilience indices for various community systems (lifeline networks, schools, healthcare, businesses, and households). The results of this study can help deepen our understanding of how to efficiently expedite the recovery process of a community.</p></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"3 2","pages":"Pages 1-19"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772741624000061/pdfft?md5=388d219140ec9b89a5f251b325989c5b&pid=1-s2.0-S2772741624000061-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resilient Cities and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772741624000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A large number of communities are impacted annually by the increasing frequency of tornado hazards resulting in damage to the infrastructure as well as disruption of community functions. The effect of the hazard geometry (center and angle of tornado path as well as the tornado width) is studied herein on how it influences the recovery of physical and social systems within the community. Given that pre-disaster preparedness including mitigation strategies (e.g., retrofits) and policies (e.g., insurance) is crucial for increasing the resilience of the community and facilitating a faster recovery process, in this study, the impact of various mitigation strategies and policies on the recovery trajectory and resilience of a typical US community subjected to a tornado is investigated considering different sources of uncertainties. The virtual testbed of Centerville is selected in this paper and is modeled by adopting the Agent-based modeling (ABM) approach which is a powerful tool for conducting community resilience analysis that simulates the behavior of different types of agents and their interactions to capture their interdependencies. The results are presented in the form of recovery time series as well as calculated resilience indices for various community systems (lifeline networks, schools, healthcare, businesses, and households). The results of this study can help deepen our understanding of how to efficiently expedite the recovery process of a community.