Stable n-Type Perylene Derivative Ladder Polymer with Antiambipolarity for Electrically Reconfigurable Organic Logic Gates

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-03-26 DOI:10.1002/adma.202308823
Xihu Wu, Qiang He, Zhongliang Zhou, Teck Lip Dexter Tam, Cindy Tang, Ming Lin, Maximilian Moser, Sophie Griggs, Adam Marks, Shuai Chen, Jianwei Xu, Iain McCulloch, Wei Lin Leong
{"title":"Stable n-Type Perylene Derivative Ladder Polymer with Antiambipolarity for Electrically Reconfigurable Organic Logic Gates","authors":"Xihu Wu,&nbsp;Qiang He,&nbsp;Zhongliang Zhou,&nbsp;Teck Lip Dexter Tam,&nbsp;Cindy Tang,&nbsp;Ming Lin,&nbsp;Maximilian Moser,&nbsp;Sophie Griggs,&nbsp;Adam Marks,&nbsp;Shuai Chen,&nbsp;Jianwei Xu,&nbsp;Iain McCulloch,&nbsp;Wei Lin Leong","doi":"10.1002/adma.202308823","DOIUrl":null,"url":null,"abstract":"<p>Organic electrochemical transistors (OECTs) are one of the promising building blocks to realize next-generation bioelectronics. To date, however, the performance and signal processing capabilities of these devices remain limited by their stability and speed. Herein, the authors demonstrate stable and fast <i>n</i>-type organic electrochemical transistors based on a side-chain-free ladder polymer, poly(benzimidazoanthradiisoquinolinedione). The device demonstrated fast normalized transient speed of 0.56 ± 0.17 ms um<sup>−2</sup> and excellent long-term stability in aqueous electrolytes, with no significant drop in its doping current after 50 000 successive doping/dedoping cycles and 2-month storage at ambient conditions. These unique characteristics make this polymer especially suitable for bioelectronics, such as being used as a pull-down channel in a complementary inverter for long-term stable detection of electrophysiological signals. Moreover, the developed device shows a reversible anti-ambipolar behavior, enabling reconfigurable electronics to be realized using a single material. These results go beyond the conventional OECT and demonstrate the potential of OECTs to exhibit dynamically configurable functionalities for next-generation reconfigurable electronics.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202308823","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic electrochemical transistors (OECTs) are one of the promising building blocks to realize next-generation bioelectronics. To date, however, the performance and signal processing capabilities of these devices remain limited by their stability and speed. Herein, the authors demonstrate stable and fast n-type organic electrochemical transistors based on a side-chain-free ladder polymer, poly(benzimidazoanthradiisoquinolinedione). The device demonstrated fast normalized transient speed of 0.56 ± 0.17 ms um−2 and excellent long-term stability in aqueous electrolytes, with no significant drop in its doping current after 50 000 successive doping/dedoping cycles and 2-month storage at ambient conditions. These unique characteristics make this polymer especially suitable for bioelectronics, such as being used as a pull-down channel in a complementary inverter for long-term stable detection of electrophysiological signals. Moreover, the developed device shows a reversible anti-ambipolar behavior, enabling reconfigurable electronics to be realized using a single material. These results go beyond the conventional OECT and demonstrate the potential of OECTs to exhibit dynamically configurable functionalities for next-generation reconfigurable electronics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有反双向性的稳定 n 型过烯烃衍生物梯形聚合物,用于可电重构的有机逻辑门。
有机电化学晶体管(OECTs)是实现下一代生物电子学的有前途的构件之一。然而,迄今为止,这些器件的性能和信号处理能力仍然受到其稳定性和速度的限制。在此,我们展示了一种基于无侧链梯形聚合物聚(苯并咪唑蒽二酮)的稳定而快速的 n 型有机电化学晶体管。该器件的归一化瞬态速度为 0.56 ± 0.17 ms/um2,在水性电解质中具有出色的长期稳定性,在环境条件下连续掺杂/掺杂循环 50,000 次和储存 2 个月后,掺杂电流没有明显下降。这些独特的特性使这种聚合物特别适用于生物电子学,例如用作互补逆变器中的下拉通道,以长期稳定地检测电生理信号。此外,所开发的器件还具有可逆的反双极性,从而可以使用单一材料实现可重新配置的电子器件。我们的成果超越了传统的 OECT,证明了 OECTs 具有为下一代可重构电子器件提供动态可配置功能的潜力。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Heterogeneous Integration of Wide Bandgap Semiconductors and 2D Materials: Processes, Applications, and Perspectives Construction of COF/COF Organic S-Scheme Heterostructure for Enhanced Overall Water Splitting Intrinsic Narrowband Blue Phosphorescent Materials and Their Applications in 3D Printed Self-monitoring Microfluidic Chips Carbon-based Flame Retardants for Polymers: A Bottom-up Review (Adv. Mater. 42/2024) Digitalization of Colorimetric Sensor Technologies for Food Safety (Adv. Mater. 42/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1