Magsarjav Bataa, Siwoo Song, Kunsoo Park, Miran Kim, Jung Hee Cheon, Sun Kim
{"title":"Finding Highly Similar Regions of Genomic Sequences Through Homomorphic Encryption.","authors":"Magsarjav Bataa, Siwoo Song, Kunsoo Park, Miran Kim, Jung Hee Cheon, Sun Kim","doi":"10.1089/cmb.2023.0050","DOIUrl":null,"url":null,"abstract":"<p><p>Finding highly similar regions of genomic sequences is a basic computation of genomic analysis. Genomic analyses on a large amount of data are efficiently processed in cloud environments, but outsourcing them to a cloud raises concerns over the privacy and security issues. Homomorphic encryption (HE) is a powerful cryptographic primitive that preserves privacy of genomic data in various analyses processed in an untrusted cloud environment. We introduce an efficient algorithm for finding highly similar regions of two homomorphically encrypted sequences, and describe how to implement it using the bit-wise and word-wise HE schemes. In the experiment, our algorithm outperforms an existing algorithm by up to two orders of magnitude in terms of elapsed time. Overall, it finds highly similar regions of the sequences in real data sets in a feasible time.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":"31 3","pages":"197-212"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0050","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Finding highly similar regions of genomic sequences is a basic computation of genomic analysis. Genomic analyses on a large amount of data are efficiently processed in cloud environments, but outsourcing them to a cloud raises concerns over the privacy and security issues. Homomorphic encryption (HE) is a powerful cryptographic primitive that preserves privacy of genomic data in various analyses processed in an untrusted cloud environment. We introduce an efficient algorithm for finding highly similar regions of two homomorphically encrypted sequences, and describe how to implement it using the bit-wise and word-wise HE schemes. In the experiment, our algorithm outperforms an existing algorithm by up to two orders of magnitude in terms of elapsed time. Overall, it finds highly similar regions of the sequences in real data sets in a feasible time.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases