Toward Robust Self-Training Paradigm for Molecular Prediction Tasks.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of Computational Biology Pub Date : 2024-03-01 DOI:10.1089/cmb.2023.0187
Hehuan Ma, Feng Jiang, Yu Rong, Yuzhi Guo, Junzhou Huang
{"title":"Toward Robust Self-Training Paradigm for Molecular Prediction Tasks.","authors":"Hehuan Ma, Feng Jiang, Yu Rong, Yuzhi Guo, Junzhou Huang","doi":"10.1089/cmb.2023.0187","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular prediction tasks normally demand a series of professional experiments to label the target molecule, which suffers from the limited labeled data problem. One of the semisupervised learning paradigms, known as self-training, utilizes both labeled and unlabeled data. Specifically, a teacher model is trained using labeled data and produces pseudo labels for unlabeled data. These labeled and pseudo-labeled data are then jointly used to train a student model. However, the pseudo labels generated from the teacher model are generally not sufficiently accurate. Thus, we propose a robust self-training strategy by exploring robust loss function to handle such noisy labels in two paradigms, that is, generic and adaptive. We have conducted experiments on three molecular biology prediction tasks with four backbone models to gradually evaluate the performance of the proposed robust self-training strategy. The results demonstrate that the proposed method enhances prediction performance across all tasks, notably within molecular regression tasks, where there has been an average enhancement of 41.5%. Furthermore, the visualization analysis confirms the superiority of our method. Our proposed robust self-training is a simple yet effective strategy that efficiently improves molecular biology prediction performance. It tackles the labeled data insufficient issue in molecular biology by taking advantage of both labeled and unlabeled data. Moreover, it can be easily embedded with any prediction task, which serves as a universal approach for the bioinformatics community.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0187","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular prediction tasks normally demand a series of professional experiments to label the target molecule, which suffers from the limited labeled data problem. One of the semisupervised learning paradigms, known as self-training, utilizes both labeled and unlabeled data. Specifically, a teacher model is trained using labeled data and produces pseudo labels for unlabeled data. These labeled and pseudo-labeled data are then jointly used to train a student model. However, the pseudo labels generated from the teacher model are generally not sufficiently accurate. Thus, we propose a robust self-training strategy by exploring robust loss function to handle such noisy labels in two paradigms, that is, generic and adaptive. We have conducted experiments on three molecular biology prediction tasks with four backbone models to gradually evaluate the performance of the proposed robust self-training strategy. The results demonstrate that the proposed method enhances prediction performance across all tasks, notably within molecular regression tasks, where there has been an average enhancement of 41.5%. Furthermore, the visualization analysis confirms the superiority of our method. Our proposed robust self-training is a simple yet effective strategy that efficiently improves molecular biology prediction performance. It tackles the labeled data insufficient issue in molecular biology by taking advantage of both labeled and unlabeled data. Moreover, it can be easily embedded with any prediction task, which serves as a universal approach for the bioinformatics community.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对分子预测任务的鲁棒性自我训练范例。
分子预测任务通常需要一系列专业实验来标记目标分子,这就存在标记数据有限的问题。半监督学习范式之一,即自我训练(self-training),同时利用标记数据和非标记数据。具体来说,教师模型使用标记数据进行训练,并为未标记数据生成伪标签。然后,这些带标签和伪标签的数据被共同用于训练学生模型。然而,教师模型生成的伪标签通常不够准确。因此,我们提出了一种稳健的自我训练策略,通过探索稳健的损失函数,在通用和自适应两种范式中处理此类噪声标签。我们用四个骨干模型在三个分子生物学预测任务中进行了实验,以逐步评估所提出的鲁棒自我训练策略的性能。结果表明,所提出的方法提高了所有任务的预测性能,特别是在分子回归任务中,平均提高了 41.5%。此外,可视化分析也证实了我们方法的优越性。我们提出的鲁棒自我训练是一种简单而有效的策略,能有效提高分子生物学预测性能。它利用标记和非标记数据,解决了分子生物学中标记数据不足的问题。此外,它还能轻松嵌入任何预测任务,是生物信息学界的通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
期刊最新文献
A Hybrid GNN Approach for Improved Molecular Property Prediction. Protein-Protein Interaction Prediction Model Based on ProtBert-BiGRU-Attention. BiRNN-DDI: A Drug-Drug Interaction Event Type Prediction Model Based on Bidirectional Recurrent Neural Network and Graph2Seq Representation. SuperTAD-Fast: Accelerating Topologically Associating Domains Detection Through Discretization. CFINet: Cross-Modality MRI Feature Interaction Network for Pseudoprogression Prediction of Glioblastoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1