{"title":"Preparation and Gas Separation of Amorphous Silicon Oxycarbide Membrane Supported on Silicon Nitride Membrane.","authors":"Hengguo Jin, Xin Xu","doi":"10.3390/membranes14030063","DOIUrl":null,"url":null,"abstract":"<p><p>An amorphous silicon oxycarbide membrane supported on a silicon nitride membrane substrate was prepared. A starting suspension containing polyhydromethylsiloxane (PHMS), tetramethyltetravinyl-cyclotetrasiloxane (TMTVS) and a platinum catalyst was first prepared and spin-coated on a silicon nitride membrane, and then the suspension was cross-linked and cured, followed by pyrolyzing at 1000 °C under a flowing Ar atmosphere. A dense amorphous silicon oxycarbon ceramic membrane with a thickness of about 1.8 µm was strongly bonded to the Si<sub>3</sub>N<sub>4</sub> membrane substrate. The single gas permeation of H<sub>2</sub> and CO<sub>2</sub> indicated that the ideal permeation selectivity of H<sub>2</sub>/CO<sub>2</sub> was up to 20 at 25 °C and 0.5 MPa with good long-term stability, indicating the potential application of the obtained membrane for hydrogen purification.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971935/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14030063","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An amorphous silicon oxycarbide membrane supported on a silicon nitride membrane substrate was prepared. A starting suspension containing polyhydromethylsiloxane (PHMS), tetramethyltetravinyl-cyclotetrasiloxane (TMTVS) and a platinum catalyst was first prepared and spin-coated on a silicon nitride membrane, and then the suspension was cross-linked and cured, followed by pyrolyzing at 1000 °C under a flowing Ar atmosphere. A dense amorphous silicon oxycarbon ceramic membrane with a thickness of about 1.8 µm was strongly bonded to the Si3N4 membrane substrate. The single gas permeation of H2 and CO2 indicated that the ideal permeation selectivity of H2/CO2 was up to 20 at 25 °C and 0.5 MPa with good long-term stability, indicating the potential application of the obtained membrane for hydrogen purification.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.