Pooled CRISPR screening of high-content cellular phenotypes using ghost cytometry.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-03-25 DOI:10.1016/j.crmeth.2024.100737
Asako Tsubouchi, Yuri An, Yoko Kawamura, Yuichi Yanagihashi, Hirofumi Nakayama, Yuri Murata, Kazuki Teranishi, Soh Ishiguro, Hiroyuki Aburatani, Nozomu Yachie, Sadao Ota
{"title":"Pooled CRISPR screening of high-content cellular phenotypes using ghost cytometry.","authors":"Asako Tsubouchi, Yuri An, Yoko Kawamura, Yuichi Yanagihashi, Hirofumi Nakayama, Yuri Murata, Kazuki Teranishi, Soh Ishiguro, Hiroyuki Aburatani, Nozomu Yachie, Sadao Ota","doi":"10.1016/j.crmeth.2024.100737","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in image-based pooled CRISPR screening have facilitated the mapping of diverse genotype-phenotype associations within mammalian cells. However, the rapid enrichment of cells based on morphological information continues to pose a challenge, constraining the capacity for large-scale gene perturbation screening across diverse high-content cellular phenotypes. In this study, we demonstrate the applicability of multimodal ghost cytometry-based cell sorting, including both fluorescent and label-free high-content phenotypes, for rapid pooled CRISPR screening within vast cell populations. Using the high-content cell sorter operating in fluorescence mode, we successfully executed kinase-specific CRISPR screening targeting genes influencing the nuclear translocation of RelA. Furthermore, using the multiparametric, label-free mode, we performed large-scale screening to identify genes involved in macrophage polarization. Notably, the label-free platform can enrich target phenotypes without requiring invasive staining, preserving untouched cells for downstream assays and expanding the potential for screening cellular phenotypes even when suitable markers are absent.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985231/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in image-based pooled CRISPR screening have facilitated the mapping of diverse genotype-phenotype associations within mammalian cells. However, the rapid enrichment of cells based on morphological information continues to pose a challenge, constraining the capacity for large-scale gene perturbation screening across diverse high-content cellular phenotypes. In this study, we demonstrate the applicability of multimodal ghost cytometry-based cell sorting, including both fluorescent and label-free high-content phenotypes, for rapid pooled CRISPR screening within vast cell populations. Using the high-content cell sorter operating in fluorescence mode, we successfully executed kinase-specific CRISPR screening targeting genes influencing the nuclear translocation of RelA. Furthermore, using the multiparametric, label-free mode, we performed large-scale screening to identify genes involved in macrophage polarization. Notably, the label-free platform can enrich target phenotypes without requiring invasive staining, preserving untouched cells for downstream assays and expanding the potential for screening cellular phenotypes even when suitable markers are absent.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用幽灵细胞计数法对高含量细胞表型进行联合 CRISPR 筛选。
基于图像的集合 CRISPR 筛选技术的最新进展促进了哺乳动物细胞内各种基因型-表型关联的图谱绘制。然而,根据形态学信息快速富集细胞仍然是一个挑战,制约了在各种高含量细胞表型中进行大规模基因扰动筛选的能力。在本研究中,我们展示了基于多模态鬼细胞术的细胞分选(包括荧光和无标记高内涵表型)在庞大细胞群中进行快速集合 CRISPR 筛选的适用性。利用在荧光模式下运行的高内涵细胞分拣机,我们成功地针对影响RelA核转位的基因进行了激酶特异性CRISPR筛选。此外,我们还利用多参数、无标记模式进行了大规模筛选,以确定参与巨噬细胞极化的基因。值得注意的是,无标记平台不需要侵入性染色就能富集目标表型,为下游检测保留了未触及的细胞,扩大了即使在没有合适标记的情况下筛选细胞表型的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
Optimized full-spectrum flow cytometry panel for deep immunophenotyping of murine lungs. A deep learning framework combining molecular image and protein structural representations identifies candidate drugs for pain. Adult zebrafish can learn Morris water maze-like tasks in a two-dimensional virtual reality system. Recovering single-cell expression profiles from spatial transcriptomics with scResolve. Mimicking and analyzing the tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1