Recovering single-cell expression profiles from spatial transcriptomics with scResolve.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-10-21 Epub Date: 2024-09-25 DOI:10.1016/j.crmeth.2024.100864
Hao Chen, Young Je Lee, Jose A Ovando-Ricardez, Lorena Rosas, Mauricio Rojas, Ana L Mora, Ziv Bar-Joseph, Jose Lugo-Martinez
{"title":"Recovering single-cell expression profiles from spatial transcriptomics with scResolve.","authors":"Hao Chen, Young Je Lee, Jose A Ovando-Ricardez, Lorena Rosas, Mauricio Rojas, Ana L Mora, Ziv Bar-Joseph, Jose Lugo-Martinez","doi":"10.1016/j.crmeth.2024.100864","DOIUrl":null,"url":null,"abstract":"<p><p>Many popular spatial transcriptomics techniques lack single-cell resolution. Instead, these methods measure the collective gene expression for each location from a mixture of cells, potentially containing multiple cell types. Here, we developed scResolve, a method for recovering single-cell expression profiles from spatial transcriptomics measurements at multi-cellular resolution. scResolve accurately restores expression profiles of individual cells at their locations, which is unattainable with cell type deconvolution. Applications of scResolve on human breast cancer data and human lung disease data demonstrate that scResolve enables cell-type-specific differential gene expression analysis between different tissue contexts and accurate identification of rare cell populations. The spatially resolved cellular-level expression profiles obtained through scResolve facilitate more flexible and precise spatial analysis that complements raw multi-cellular level analysis.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Many popular spatial transcriptomics techniques lack single-cell resolution. Instead, these methods measure the collective gene expression for each location from a mixture of cells, potentially containing multiple cell types. Here, we developed scResolve, a method for recovering single-cell expression profiles from spatial transcriptomics measurements at multi-cellular resolution. scResolve accurately restores expression profiles of individual cells at their locations, which is unattainable with cell type deconvolution. Applications of scResolve on human breast cancer data and human lung disease data demonstrate that scResolve enables cell-type-specific differential gene expression analysis between different tissue contexts and accurate identification of rare cell populations. The spatially resolved cellular-level expression profiles obtained through scResolve facilitate more flexible and precise spatial analysis that complements raw multi-cellular level analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 scResolve 从空间转录组学中恢复单细胞表达谱。
许多流行的空间转录组学技术缺乏单细胞分辨率。相反,这些方法测量的是来自细胞混合物的每个位置的基因集体表达,其中可能包含多种细胞类型。在这里,我们开发了 scResolve,一种以多细胞分辨率从空间转录组学测量中恢复单细胞表达谱的方法。scResolve 能准确恢复单个细胞在其位置的表达谱,这是细胞类型解卷积无法实现的。scResolve 在人类乳腺癌数据和人类肺部疾病数据中的应用表明,scResolve 能够在不同的组织环境中进行细胞类型特异性差异基因表达分析,并准确识别稀有细胞群。通过 scResolve 获得的空间分辨细胞级表达谱有助于进行更灵活、更精确的空间分析,补充原始的多细胞级分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
Optimized full-spectrum flow cytometry panel for deep immunophenotyping of murine lungs. A deep learning framework combining molecular image and protein structural representations identifies candidate drugs for pain. Adult zebrafish can learn Morris water maze-like tasks in a two-dimensional virtual reality system. Recovering single-cell expression profiles from spatial transcriptomics with scResolve. Mimicking and analyzing the tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1