Osteoarthritis Diagnosis Integrating Whole Joint Radiomics and Clinical Features for Robust Learning Models Using Biological Privileged Information.

Najla Al Turkestani, Lingrui Cai, Lucia Cevidanes, Jonas Bianchi, Winston Zhang, Marcela Gurgel, Maxime Gillot, Baptiste Baquero, Reza Soroushmehr
{"title":"Osteoarthritis Diagnosis Integrating Whole Joint Radiomics and Clinical Features for Robust Learning Models Using Biological Privileged Information.","authors":"Najla Al Turkestani, Lingrui Cai, Lucia Cevidanes, Jonas Bianchi, Winston Zhang, Marcela Gurgel, Maxime Gillot, Baptiste Baquero, Reza Soroushmehr","doi":"10.1007/978-3-031-47425-5_18","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a machine learning model using privileged information (LUPI) and normalized mutual information feature selection method (NMIFS) to build a robust and accurate framework to diagnose patients with Temporomandibular Joint Osteoarthritis (TMJ OA). To build such a model, we employ clinical, quantitative imaging and additional biological markers as privileged information. We show that clinical features play a leading role in the TMJ OA diagnosis and quantitative imaging features, extracted from cone-beam computerized tomography (CBCT) scans, improve the model performance. As the proposed LUPI model employs biological data in the training phase (which boosted the model performance), this data is unnecessary for the testing stage, indicating the model can be widely used even when only clinical and imaging data are collected. The model was validated using 5-fold stratified cross-validation with hyperparameter tuning to avoid the bias of data splitting. Our method achieved an AUC, specificity and precision of 0.81, 0.79 and 0.77, respectively.</p>","PeriodicalId":517997,"journal":{"name":"Medical image computing and computer assisted intervention - MICCAI 2023 workshops : ISIC 2023, Care-AI 2023, MedAGI 2023, DeCaF 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8-12, 2023, proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10964798/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer assisted intervention - MICCAI 2023 workshops : ISIC 2023, Care-AI 2023, MedAGI 2023, DeCaF 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8-12, 2023, proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-47425-5_18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a machine learning model using privileged information (LUPI) and normalized mutual information feature selection method (NMIFS) to build a robust and accurate framework to diagnose patients with Temporomandibular Joint Osteoarthritis (TMJ OA). To build such a model, we employ clinical, quantitative imaging and additional biological markers as privileged information. We show that clinical features play a leading role in the TMJ OA diagnosis and quantitative imaging features, extracted from cone-beam computerized tomography (CBCT) scans, improve the model performance. As the proposed LUPI model employs biological data in the training phase (which boosted the model performance), this data is unnecessary for the testing stage, indicating the model can be widely used even when only clinical and imaging data are collected. The model was validated using 5-fold stratified cross-validation with hyperparameter tuning to avoid the bias of data splitting. Our method achieved an AUC, specificity and precision of 0.81, 0.79 and 0.77, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨关节炎诊断:整合全关节放射组学和临床特征,利用生物特异性信息建立强大的学习模型
本文提出了一种使用特权信息(LUPI)和归一化互信息特征选择方法(NMIFS)的机器学习模型,以建立一个稳健而准确的框架来诊断颞下颌关节骨关节炎(TMJ Osteoarthritis,TMJ OA)患者。为了建立这样一个模型,我们采用了临床、定量成像和其他生物标记作为特权信息。我们的研究表明,临床特征在颞下颌关节骨关节炎诊断中起着主导作用,而从锥形束计算机断层扫描(CBCT)中提取的定量成像特征则提高了模型的性能。由于所提出的 LUPI 模型在训练阶段采用了生物数据(这提高了模型的性能),因此在测试阶段不需要生物数据,这表明即使只收集临床和成像数据,该模型也能得到广泛应用。为了避免数据拆分带来的偏差,我们使用 5 倍分层交叉验证法对模型进行了验证,并对超参数进行了调整。我们的方法的AUC、特异性和精确度分别达到了0.81、0.79和0.77。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying Shared Neuroanatomic Architecture between Cognitive Traits through Multiscale Morphometric Correlation Analysis. Osteoarthritis Diagnosis Integrating Whole Joint Radiomics and Clinical Features for Robust Learning Models Using Biological Privileged Information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1