{"title":"Community resilience to wildfires: A network analysis approach by utilizing human mobility data","authors":"Qingqing Chen, Boyu Wang, Andrew Crooks","doi":"10.1016/j.compenvurbsys.2024.102110","DOIUrl":null,"url":null,"abstract":"<div><p>Disasters have been a long-standing concern to societies at large. With growing attention being paid to resilient communities, such concern has been brought to the forefront of resilience studies. However, there is a wide variety of definitions with respect to resilience, and a precise definition has yet to emerge. Moreover, much work to date has often focused only on the immediate response to an event, thus investigating the resilience of an area over a prolonged period of time has remained largely unexplored. To overcome these issues, we propose a novel framework utilizing network analysis and concepts from disaster science (e.g., the resilience triangle) to quantify the long-term impacts of wildfires. Taking the Mendocino Complex and Camp wildfires - the largest and most deadly wildfires in California to date, respectively - as case studies, we capture the robustness and vulnerability of communities based on human mobility data from 2018 to 2019. The results show that demographic and socioeconomic characteristics alone only partially capture community resilience, however, by leveraging human mobility data and network analysis techniques, we can enhance our understanding of resilience over space and time, providing a new lens to study disasters and their long-term impacts on society.</p></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971524000395","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Disasters have been a long-standing concern to societies at large. With growing attention being paid to resilient communities, such concern has been brought to the forefront of resilience studies. However, there is a wide variety of definitions with respect to resilience, and a precise definition has yet to emerge. Moreover, much work to date has often focused only on the immediate response to an event, thus investigating the resilience of an area over a prolonged period of time has remained largely unexplored. To overcome these issues, we propose a novel framework utilizing network analysis and concepts from disaster science (e.g., the resilience triangle) to quantify the long-term impacts of wildfires. Taking the Mendocino Complex and Camp wildfires - the largest and most deadly wildfires in California to date, respectively - as case studies, we capture the robustness and vulnerability of communities based on human mobility data from 2018 to 2019. The results show that demographic and socioeconomic characteristics alone only partially capture community resilience, however, by leveraging human mobility data and network analysis techniques, we can enhance our understanding of resilience over space and time, providing a new lens to study disasters and their long-term impacts on society.
期刊介绍:
Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.