On the implementation in Abaqus of the global–local iterative coupling and acceleration techniques

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED Finite Elements in Analysis and Design Pub Date : 2024-03-26 DOI:10.1016/j.finel.2024.104152
Omar Bettinotti , Stéphane Guinard , Eric Véron , Pierre Gosselet
{"title":"On the implementation in Abaqus of the global–local iterative coupling and acceleration techniques","authors":"Omar Bettinotti ,&nbsp;Stéphane Guinard ,&nbsp;Eric Véron ,&nbsp;Pierre Gosselet","doi":"10.1016/j.finel.2024.104152","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents results and convergence study of the Global–Local Iterative Coupling through the implementation in the commercial software Abaqus making use of the co-simulation engine. A hierarchical modeling and simulation approach is often required to alleviate modeling burdens. Particular focus has been devoted here on convergence acceleration and performance optimization. Two applications in statics with nonlinear material behavior and geometrically nonlinear formulation are considered here: first a holed curved plate under traction with elastic–plastic material, then a pre-stressed bolted joint connecting two plates between each other and subjected to traction load. Three different convergence acceleration techniques are compared in terms of convergence performance and accuracy. An inexact solver strategy is proposed to improve computing time performance. The results show promising results for the coupling technology and constitute a step forward in the availability of non-intrusive multi-scale modeling capabilities for complex structures and assemblies.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24000465","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents results and convergence study of the Global–Local Iterative Coupling through the implementation in the commercial software Abaqus making use of the co-simulation engine. A hierarchical modeling and simulation approach is often required to alleviate modeling burdens. Particular focus has been devoted here on convergence acceleration and performance optimization. Two applications in statics with nonlinear material behavior and geometrically nonlinear formulation are considered here: first a holed curved plate under traction with elastic–plastic material, then a pre-stressed bolted joint connecting two plates between each other and subjected to traction load. Three different convergence acceleration techniques are compared in terms of convergence performance and accuracy. An inexact solver strategy is proposed to improve computing time performance. The results show promising results for the coupling technology and constitute a step forward in the availability of non-intrusive multi-scale modeling capabilities for complex structures and assemblies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于在 Abaqus 中实施全局-局部迭代耦合和加速技术
本文介绍了利用协同仿真引擎在商业软件 Abaqus 中实施全局-局部迭代耦合的结果和收敛性研究。为减轻建模负担,通常需要采用分层建模和仿真方法。这里特别强调收敛加速和性能优化。这里考虑了两个具有非线性材料行为和几何非线性表述的静力学应用:首先是在牵引力作用下具有弹塑性材料的孔状曲面板,然后是在牵引力作用下连接两块板的预应力螺栓连接。在收敛性能和精度方面,比较了三种不同的收敛加速技术。还提出了一种非精确求解器策略,以提高计算时间性能。研究结果表明,耦合技术具有良好的应用前景,在为复杂结构和组件提供非侵入式多尺度建模能力方面向前迈进了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
期刊最新文献
Investigation of nonlinear buckling of FGM shells using a high-order finite continuation approach Impact of surface roughness on the formation of necking instabilities in additive manufactured porous metal plates subjected to dynamic plane strain stretching Dual failure analysis of 3D structures under cyclic loads using bFS-FEM based numerical approaches 3D analysis of reinforced concrete structural components using a multi-surface elasto-plastic-anisotropic-damage material model Efficient thermal modeling of laser directed energy deposition using the forward Euler scheme: Methodology, merits and limitations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1