Autonomous Driving With Perception Uncertainties: Deep-Ensemble Based Adaptive Cruise Control

Xiao Li, H. Eric Tseng, Anouck Girard, Ilya Kolmanovsky
{"title":"Autonomous Driving With Perception Uncertainties: Deep-Ensemble Based Adaptive Cruise Control","authors":"Xiao Li, H. Eric Tseng, Anouck Girard, Ilya Kolmanovsky","doi":"arxiv-2403.15577","DOIUrl":null,"url":null,"abstract":"Autonomous driving depends on perception systems to understand the\nenvironment and to inform downstream decision-making. While advanced perception\nsystems utilizing black-box Deep Neural Networks (DNNs) demonstrate human-like\ncomprehension, their unpredictable behavior and lack of interpretability may\nhinder their deployment in safety critical scenarios. In this paper, we develop\nan Ensemble of DNN regressors (Deep Ensemble) that generates predictions with\nquantification of prediction uncertainties. In the scenario of Adaptive Cruise\nControl (ACC), we employ the Deep Ensemble to estimate distance headway to the\nlead vehicle from RGB images and enable the downstream controller to account\nfor the estimation uncertainty. We develop an adaptive cruise controller that\nutilizes Stochastic Model Predictive Control (MPC) with chance constraints to\nprovide a probabilistic safety guarantee. We evaluate our ACC algorithm using a\nhigh-fidelity traffic simulator and a real-world traffic dataset and\ndemonstrate the ability of the proposed approach to effect speed tracking and\ncar following while maintaining a safe distance headway. The\nout-of-distribution scenarios are also examined.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.15577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous driving depends on perception systems to understand the environment and to inform downstream decision-making. While advanced perception systems utilizing black-box Deep Neural Networks (DNNs) demonstrate human-like comprehension, their unpredictable behavior and lack of interpretability may hinder their deployment in safety critical scenarios. In this paper, we develop an Ensemble of DNN regressors (Deep Ensemble) that generates predictions with quantification of prediction uncertainties. In the scenario of Adaptive Cruise Control (ACC), we employ the Deep Ensemble to estimate distance headway to the lead vehicle from RGB images and enable the downstream controller to account for the estimation uncertainty. We develop an adaptive cruise controller that utilizes Stochastic Model Predictive Control (MPC) with chance constraints to provide a probabilistic safety guarantee. We evaluate our ACC algorithm using a high-fidelity traffic simulator and a real-world traffic dataset and demonstrate the ability of the proposed approach to effect speed tracking and car following while maintaining a safe distance headway. The out-of-distribution scenarios are also examined.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
感知不确定性下的自动驾驶:基于深度集合的自适应巡航控制
自动驾驶依赖于感知系统来理解环境并为下游决策提供信息。虽然利用黑盒子深度神经网络(DNN)的先进感知系统具有类似人类的理解能力,但其不可预测的行为和缺乏可解释性可能会阻碍其在安全关键场景中的部署。在本文中,我们开发了一种 DNN 回归器集合(Deep Ensemble),它可以生成预测,并对预测的不确定性进行量化。在自适应巡航控制系统(ACC)的应用场景中,我们利用深度集合从 RGB 图像中估计领先车辆的前进距离,并使下游控制器能够考虑到估计的不确定性。我们开发了一种自适应巡航控制器,该控制器利用随机模型预测控制(MPC)和机会约束提供概率安全保证。我们使用高保真交通模拟器和真实交通数据集对自适应巡航控制器算法进行了评估,证明了所提出的方法能够在保持安全车距的同时实现速度跟踪和汽车跟随。此外,还研究了脱离分布的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human-Variability-Respecting Optimal Control for Physical Human-Machine Interaction A Valuation Framework for Customers Impacted by Extreme Temperature-Related Outages On the constrained feedback linearization control based on the MILP representation of a ReLU-ANN Motion Planning under Uncertainty: Integrating Learning-Based Multi-Modal Predictors into Branch Model Predictive Control Managing Renewable Energy Resources Using Equity-Market Risk Tools - the Efficient Frontiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1