Experimental investigations on mechanical properties of AA6061-T6 aluminum alloy joined by laser welding using digital image correlation

IF 2.9 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Advanced Manufacturing Technology Pub Date : 2024-03-26 DOI:10.1007/s00170-024-13488-w
Jie Sheng, Fanrong Kong, Wei Tong
{"title":"Experimental investigations on mechanical properties of AA6061-T6 aluminum alloy joined by laser welding using digital image correlation","authors":"Jie Sheng, Fanrong Kong, Wei Tong","doi":"10.1007/s00170-024-13488-w","DOIUrl":null,"url":null,"abstract":"<p>In industrial applications of laser welding of aluminum alloys, it is often a challenge to find optimal process parameters to produce welded joints of good quality. This study investigates the effect of changes in welding parameters on the resulting welding defects and tensile properties of laser-welded aluminum alloy joints. A high-power disk laser was used for welding 2.54 mm thick AA6061-T6 sheets with four different sets of process parameters. X-ray computed microtomography and full-field microhardness mapping were first used to characterize the as-welded joints. Surface strain mapping based on digital image correlation and a two-mirror optical setup was applied to tensile testing of welded joints up to ductile failure. It was found that the fusion zone of all four laser-welded joints has similar microhardness levels and spatial distributions. Small pores were detected in all four weld joints, except one had a few large pores. Both microstructural heterogeneities and surface geometric irregularities were found to induce highly non-uniform local tensile deformation in laser-welded joints. One set of laser welding parameters was identified to produce the aluminum welds with the best tensile properties even though its weld joint may contain a few relatively large pores.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00170-024-13488-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In industrial applications of laser welding of aluminum alloys, it is often a challenge to find optimal process parameters to produce welded joints of good quality. This study investigates the effect of changes in welding parameters on the resulting welding defects and tensile properties of laser-welded aluminum alloy joints. A high-power disk laser was used for welding 2.54 mm thick AA6061-T6 sheets with four different sets of process parameters. X-ray computed microtomography and full-field microhardness mapping were first used to characterize the as-welded joints. Surface strain mapping based on digital image correlation and a two-mirror optical setup was applied to tensile testing of welded joints up to ductile failure. It was found that the fusion zone of all four laser-welded joints has similar microhardness levels and spatial distributions. Small pores were detected in all four weld joints, except one had a few large pores. Both microstructural heterogeneities and surface geometric irregularities were found to induce highly non-uniform local tensile deformation in laser-welded joints. One set of laser welding parameters was identified to produce the aluminum welds with the best tensile properties even though its weld joint may contain a few relatively large pores.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用数字图像相关技术对激光焊接连接的 AA6061-T6 铝合金的机械性能进行实验研究
在铝合金激光焊接的工业应用中,如何找到最佳工艺参数以生产出优质焊点往往是一项挑战。本研究探讨了焊接参数变化对激光焊接铝合金接头焊接缺陷和拉伸性能的影响。使用高功率盘式激光器焊接 2.54 毫米厚的 AA6061-T6 板材,并设置了四套不同的工艺参数。首先使用 X 射线计算显微层析成像和全场显微硬度绘图来表征焊接接头。基于数字图像相关和双镜光学装置的表面应变绘图被用于焊接接头的拉伸测试,直至韧性破坏。结果发现,所有四个激光焊接接头的熔合区都具有相似的显微硬度水平和空间分布。除了一个焊点有几个大气孔外,其他四个焊点都检测到了小气孔。研究发现,微观结构异质性和表面几何不规则性会导致激光焊接接头产生高度不均匀的局部拉伸变形。确定了一组激光焊接参数,以产生具有最佳拉伸性能的铝焊缝,即使其焊点可能含有几个相对较大的气孔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
17.60%
发文量
2008
审稿时长
62 days
期刊介绍: The International Journal of Advanced Manufacturing Technology bridges the gap between pure research journals and the more practical publications on advanced manufacturing and systems. It therefore provides an outstanding forum for papers covering applications-based research topics relevant to manufacturing processes, machines and process integration.
期刊最新文献
Pure niobium manufactured by Laser-Based Powder Bed Fusion: influence of process parameters and supports on as-built surface quality On a simulation-based chatter prediction system by integrating relative entropy and dynamic cutting force Modeling of the motorized spindle temperature field considering the thermos-mechanical coupling on constant pressure preloaded bearings Multi-layer solid-state ultrasonic additive manufacturing of aluminum/copper: local properties and texture Material-structure-process-performance integrated optimization method of steel/aluminum self-piercing riveted joint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1