{"title":"Poplar wood treated with nano-silver–copper particles: fungal degradation and leaching analysis","authors":"Xiwei Wang, Tengfei Yi, Hongxue Luo, Yanran Qi, Fengbiao Yao, Yiliang Liu, Yongfeng Li","doi":"10.1515/hf-2023-0128","DOIUrl":null,"url":null,"abstract":"This study investigated the inhibition effect of nanoscale silver–copper particle (20 nm) against <jats:italic>Coriolus versicolor</jats:italic> and <jats:italic>Gloeophyllum</jats:italic> <jats:italic>trabeum</jats:italic>. Poplar wood samples (<jats:italic>Populus</jats:italic> L.) were vacuum-impregnated using aqueous nano-AgCu solutions at concentrations of 0.01 %, 0.02 %, 0.03 %, 0.05 %, 0.075 %, and 0.1 %. Alkaline copper quaternary (ACQ, 0.1 %), boric acid (0.2 %) and untreated control group (CK) were employed for comparisons. Decay resistance and leachability were studied. The anti-fungi effects were compared between nano-AgCu, nano-Ag, Ag<jats:sup>+</jats:sup> (silver nitrate), Cu<jats:sup>2+</jats:sup> (copper nitrate), and a composite of Ag<jats:sup>+</jats:sup>–Cu<jats:sup>2+</jats:sup>. Nano-AgCu particle exhibited effective resistance to fungi after 12 weeks of exposure. The threshold retention of the nano-AgCu against <jats:italic>C. versicolor</jats:italic> and <jats:italic>G. trabeum</jats:italic> on poplar wood was 0.19 kg m<jats:sup>−3</jats:sup> and 0.62 kg m<jats:sup>−3</jats:sup>, respectively. The silver–copper nanoparticles demonstrated excellent leach resistance, and the inhibition effect was retained after leaching. The nano-AgCu particle provided better antifungal effects than single ions or metal nanoparticles. This study illustrates the potential of using nano-AgCu particle as an efficient wood preservative compared to commercial water-soluble preservatives.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":"30 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holzforschung","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/hf-2023-0128","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the inhibition effect of nanoscale silver–copper particle (20 nm) against Coriolus versicolor and Gloeophyllumtrabeum. Poplar wood samples (Populus L.) were vacuum-impregnated using aqueous nano-AgCu solutions at concentrations of 0.01 %, 0.02 %, 0.03 %, 0.05 %, 0.075 %, and 0.1 %. Alkaline copper quaternary (ACQ, 0.1 %), boric acid (0.2 %) and untreated control group (CK) were employed for comparisons. Decay resistance and leachability were studied. The anti-fungi effects were compared between nano-AgCu, nano-Ag, Ag+ (silver nitrate), Cu2+ (copper nitrate), and a composite of Ag+–Cu2+. Nano-AgCu particle exhibited effective resistance to fungi after 12 weeks of exposure. The threshold retention of the nano-AgCu against C. versicolor and G. trabeum on poplar wood was 0.19 kg m−3 and 0.62 kg m−3, respectively. The silver–copper nanoparticles demonstrated excellent leach resistance, and the inhibition effect was retained after leaching. The nano-AgCu particle provided better antifungal effects than single ions or metal nanoparticles. This study illustrates the potential of using nano-AgCu particle as an efficient wood preservative compared to commercial water-soluble preservatives.
期刊介绍:
Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research. The German title reflects the journal''s origins in a long scientific tradition, but all articles are published in English to stimulate and promote cooperation between experts all over the world. Ahead-of-print publishing ensures fastest possible knowledge transfer.