Trajectory Planning of Robotic Manipulator in Dynamic Environment Exploiting DRL

Osama Ahmad, Zawar Hussain, Hammad Naeem
{"title":"Trajectory Planning of Robotic Manipulator in Dynamic Environment Exploiting DRL","authors":"Osama Ahmad, Zawar Hussain, Hammad Naeem","doi":"arxiv-2403.16652","DOIUrl":null,"url":null,"abstract":"This study is about the implementation of a reinforcement learning algorithm\nin the trajectory planning of manipulators. We have a 7-DOF robotic arm to pick\nand place the randomly placed block at a random target point in an unknown\nenvironment. The obstacle is randomly moving which creates a hurdle in picking\nthe object. The objective of the robot is to avoid the obstacle and pick the\nblock with constraints to a fixed timestamp. In this literature, we have\napplied a deep deterministic policy gradient (DDPG) algorithm and compared the\nmodel's efficiency with dense and sparse rewards.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.16652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study is about the implementation of a reinforcement learning algorithm in the trajectory planning of manipulators. We have a 7-DOF robotic arm to pick and place the randomly placed block at a random target point in an unknown environment. The obstacle is randomly moving which creates a hurdle in picking the object. The objective of the robot is to avoid the obstacle and pick the block with constraints to a fixed timestamp. In this literature, we have applied a deep deterministic policy gradient (DDPG) algorithm and compared the model's efficiency with dense and sparse rewards.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 DRL 进行动态环境中机器人机械手的轨迹规划
本研究是关于强化学习算法在机械手轨迹规划中的应用。我们有一个 7-DOF 机械臂,要在未知环境中将随机放置的木块拾取并放置到随机目标点。障碍物是随机移动的,这给拾取物体造成了障碍。机器人的目标是避开障碍物,并在固定时间戳的约束下拾取木块。在这篇文献中,我们应用了一种深度确定性策略梯度(DDPG)算法,并比较了该算法在密集奖励和稀疏奖励情况下的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human-Variability-Respecting Optimal Control for Physical Human-Machine Interaction A Valuation Framework for Customers Impacted by Extreme Temperature-Related Outages On the constrained feedback linearization control based on the MILP representation of a ReLU-ANN Motion Planning under Uncertainty: Integrating Learning-Based Multi-Modal Predictors into Branch Model Predictive Control Managing Renewable Energy Resources Using Equity-Market Risk Tools - the Efficient Frontiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1