Analysis of fire extinguishing performance and mechanisms in transformer oil pool fires by large-scale compressed nitrogen foam: Impact of different nozzle pressures

IF 1.9 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Fire Sciences Pub Date : 2024-03-26 DOI:10.1177/07349041241238151
Fengju Shang, Jiaqing Zhang, Taiyun Zhu, Wen Su, Kaiyuan Li, Yanyan Zou, Yi Guo
{"title":"Analysis of fire extinguishing performance and mechanisms in transformer oil pool fires by large-scale compressed nitrogen foam: Impact of different nozzle pressures","authors":"Fengju Shang, Jiaqing Zhang, Taiyun Zhu, Wen Su, Kaiyuan Li, Yanyan Zou, Yi Guo","doi":"10.1177/07349041241238151","DOIUrl":null,"url":null,"abstract":"This article investigates the suppression of transformer oil pool fires using compressed nitrogen aqueous film-forming foam extinguishing agents with varying nozzle pressures (0.1–0.4 MPa), and a comprehensive analysis of fire extinguishing behavior and resistance to re-ignition was conducted. The research findings indicate that at a nozzle pressure of 0.4 MPa, there is a significant enhancement in fire extinguishing efficiency, with a reduction in extinguishing time by 15.0%–29.2%, and an increase in resistance to re-ignition by 32.2%–48.2%, making it the optimal choice. In comparison to the 0.1 MPa condition, the maximum instantaneous emissions of CO and SO<jats:sub>2</jats:sub> at 0.4 MPa are only 66.7%. The interaction of various effects, such as atomization, results in a significant enhancement of flame intensification and fire extinguishing effects when compressed nitrogen aqueous film-forming foam is sprayed at high nozzle pressures. The study provides valuable insights for firefighters in the practical use of foam extinguishing agents.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":"7 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041241238151","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the suppression of transformer oil pool fires using compressed nitrogen aqueous film-forming foam extinguishing agents with varying nozzle pressures (0.1–0.4 MPa), and a comprehensive analysis of fire extinguishing behavior and resistance to re-ignition was conducted. The research findings indicate that at a nozzle pressure of 0.4 MPa, there is a significant enhancement in fire extinguishing efficiency, with a reduction in extinguishing time by 15.0%–29.2%, and an increase in resistance to re-ignition by 32.2%–48.2%, making it the optimal choice. In comparison to the 0.1 MPa condition, the maximum instantaneous emissions of CO and SO2 at 0.4 MPa are only 66.7%. The interaction of various effects, such as atomization, results in a significant enhancement of flame intensification and fire extinguishing effects when compressed nitrogen aqueous film-forming foam is sprayed at high nozzle pressures. The study provides valuable insights for firefighters in the practical use of foam extinguishing agents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型压缩氮泡沫在变压器油池火灾中的灭火性能和机理分析:不同喷嘴压力的影响
本文研究了使用不同喷嘴压力(0.1-0.4 兆帕)的压缩氮水成膜泡沫灭火剂扑灭变压器油池火灾的情况,并对灭火行为和抗复燃能力进行了综合分析。研究结果表明,喷嘴压力为 0.4 兆帕时,灭火效率显著提高,灭火时间缩短 15.0%-29.2%,抗复燃能力提高 32.2%-48.2%,是最佳选择。与 0.1 MPa 条件相比,0.4 MPa 条件下 CO 和 SO2 的最大瞬时排放量仅为 66.7%。在高喷嘴压力下喷射压缩氮水成膜泡沫时,雾化等各种效应的相互作用导致火焰强化和灭火效果显著增强。这项研究为消防人员实际使用泡沫灭火剂提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fire Sciences
Journal of Fire Sciences 工程技术-材料科学:综合
CiteScore
4.00
自引率
0.00%
发文量
14
审稿时长
2.5 months
期刊介绍: The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
An experimental case study of escooter fire in a four-story building Reduced scale test bench for investigating the upward flame heat impact on external thermal insulation composite system facades Influence of parameter variation intervals on pyrolysis sensitivity analysis for charring and non-charring materials The effect of repeated washings on thermal protective performances of one most used structural firefighting turnout gear in the Gauteng Province in South Africa Re-examination of the intumescence mechanism of ammonium polyphosphate/pentaerythritol/zeolite 4A fire-retarded formulation using advanced spectroscopic techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1