Simulation approach to study kinetic heterogeneity of gadolinium catalytic system in the 1,4-cis-polyisoprene production

IF 3.2 3区 化学 Q2 POLYMER SCIENCE e-Polymers Pub Date : 2024-03-25 DOI:10.1515/epoly-2023-0131
Eldar Miftakhov, Sofia Mustafina, Andrey Akimov, Svetlana Mustafina
{"title":"Simulation approach to study kinetic heterogeneity of gadolinium catalytic system in the 1,4-cis-polyisoprene production","authors":"Eldar Miftakhov, Sofia Mustafina, Andrey Akimov, Svetlana Mustafina","doi":"10.1515/epoly-2023-0131","DOIUrl":null,"url":null,"abstract":"This article presents a novel simulation approach for solving the inverse problem of kinetic heterogeneity in polymerization processes, specifically focusing on the production of polyisoprene using a gadolinium chloride solvate-based catalytic system. The proposed method is based on the assumption that the distribution of active centers (ACs) can be described by model distributions. By utilizing primary physicochemical data, such as the polymerization rate and molecular weight distribution, the simulation approach automatically identifies the kinetic parameters, determining the Frenkel statistical parameter and solving the problem of kinetic heterogeneity. The experimental results revealed the presence of at least three distinct types of ACs, each contributing different proportions to the polymerization process. The simulation approach offers valuable insights into the complexities of catalytic systems and their role in polymerization, paving the way for optimizing reaction conditions and advancing industrial polymer synthesis processes. This study marks a significant step forward in understanding and controlling polymerization reactions, with potential implications for the development of innovative materials and industrial applications.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0131","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a novel simulation approach for solving the inverse problem of kinetic heterogeneity in polymerization processes, specifically focusing on the production of polyisoprene using a gadolinium chloride solvate-based catalytic system. The proposed method is based on the assumption that the distribution of active centers (ACs) can be described by model distributions. By utilizing primary physicochemical data, such as the polymerization rate and molecular weight distribution, the simulation approach automatically identifies the kinetic parameters, determining the Frenkel statistical parameter and solving the problem of kinetic heterogeneity. The experimental results revealed the presence of at least three distinct types of ACs, each contributing different proportions to the polymerization process. The simulation approach offers valuable insights into the complexities of catalytic systems and their role in polymerization, paving the way for optimizing reaction conditions and advancing industrial polymer synthesis processes. This study marks a significant step forward in understanding and controlling polymerization reactions, with potential implications for the development of innovative materials and industrial applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟法研究钆催化体系在 1,4-顺式聚异戊二烯生产中的动力学异质性
本文介绍了一种解决聚合过程中动力学异质性逆问题的新型模拟方法,特别侧重于使用氯化钆溶胶催化系统生产聚异戊二烯的过程。所提出的方法基于活性中心(AC)的分布可以用模型分布来描述这一假设。通过利用聚合速率和分子量分布等主要理化数据,该模拟方法可自动识别动力学参数,确定 Frenkel 统计参数并解决动力学异质性问题。实验结果表明,聚合过程中至少存在三种不同类型的 AC,它们在聚合过程中所占的比例各不相同。模拟方法为了解催化系统的复杂性及其在聚合过程中的作用提供了宝贵的见解,为优化反应条件和推进工业聚合物合成工艺铺平了道路。这项研究标志着在理解和控制聚合反应方面迈出了重要一步,对创新材料的开发和工业应用具有潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
e-Polymers
e-Polymers 化学-高分子科学
CiteScore
5.90
自引率
10.80%
发文量
64
审稿时长
6.4 months
期刊介绍: e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome. The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.
期刊最新文献
Design, synthesis, and characterization of novel copolymer gel particles for water-plugging applications Influence of 1,1′-Azobis(cyclohexanezonitrile) on the thermo-oxidative aging performance of diolefin elastomers Additive manufacturing (3D printing) technologies for fiber-reinforced polymer composite materials: A review on fabrication methods and process parameters Effect of tannic acid chelating treatment on thermo-oxidative aging property of natural rubber Normal-hexane treatment on PET-based waste fiber depolymerization process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1