Raman spectroscopy and one-dimensional convolutional neural network modeling as a real-time monitoring tool for in vitro transaminase-catalyzed synthesis of a pharmaceutically relevant amine precursor
Julie Østerby Madsen, Sebastian Olivier Nymann Topalian, Mikkel Fog Jacobsen, Tommy Skovby, Krist V. Gernaey, Allan S. Myerson, John Woodley
{"title":"Raman spectroscopy and one-dimensional convolutional neural network modeling as a real-time monitoring tool for in vitro transaminase-catalyzed synthesis of a pharmaceutically relevant amine precursor","authors":"Julie Østerby Madsen, Sebastian Olivier Nymann Topalian, Mikkel Fog Jacobsen, Tommy Skovby, Krist V. Gernaey, Allan S. Myerson, John Woodley","doi":"10.1002/btpr.3444","DOIUrl":null,"url":null,"abstract":"<p>Raman spectroscopy has been used to measure the concentration of a pharmaceutically relevant model amine intermediate for positive allosteric modulators of nicotinic acetylcholine receptor in a ω-transaminase-catalyzed conversion. A model based on a one-dimensional convolutional neural network was developed to translate raw data augmented Raman spectra directly into substrate concentrations, with which the conversion from ketone to amine by ω-transaminase could be determined over time. The model showed very good predictive capabilities, with <i>R</i><sup>2</sup> values higher than 0.99 for the spectra included in the modeling and 0.964 for an independent dataset. However, the model could not extrapolate outside the concentrations specified by the model. The presented work shows the potential of Raman spectroscopy as a real-time monitoring tool for biocatalytic reactions.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btpr.3444","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3444","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Raman spectroscopy has been used to measure the concentration of a pharmaceutically relevant model amine intermediate for positive allosteric modulators of nicotinic acetylcholine receptor in a ω-transaminase-catalyzed conversion. A model based on a one-dimensional convolutional neural network was developed to translate raw data augmented Raman spectra directly into substrate concentrations, with which the conversion from ketone to amine by ω-transaminase could be determined over time. The model showed very good predictive capabilities, with R2 values higher than 0.99 for the spectra included in the modeling and 0.964 for an independent dataset. However, the model could not extrapolate outside the concentrations specified by the model. The presented work shows the potential of Raman spectroscopy as a real-time monitoring tool for biocatalytic reactions.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.