Flooding stress and responses to hypoxia in plants.

IF 2.6 4区 生物学 Q2 PLANT SCIENCES Functional Plant Biology Pub Date : 2024-03-01 DOI:10.1071/FP24061
Juan de la Cruz Jiménez, Angelika Mustroph, Ole Pedersen, Daan A Weits, Romy Schmidt-Schippers
{"title":"Flooding stress and responses to hypoxia in plants.","authors":"Juan de la Cruz Jiménez, Angelika Mustroph, Ole Pedersen, Daan A Weits, Romy Schmidt-Schippers","doi":"10.1071/FP24061","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, research on flooding stress and hypoxic responses in plants has gathered increasing attention due to climate change and the important role of O2 in metabolism and signalling. This Collection of Functional Plant Biology on 'Flooding stress and responses to hypoxia in plants' presents key contributions aimed at progressing our current understanding on how plants respond to low-O2 conditions, flooding stress and a combination of stresses commonly found in flooded areas. The Collection emphasises the characterisation of diverse plant responses across different developmental stages, from seed germination to fully developed plants, and under different water stress conditions ranging from waterlogging to complete submergence, or simply low-O2 conditions resulting from limited O2 diffusivity in bulky tissues. Additionally, this Collection highlights diverse approaches, including eco-physiological characterisation of plant responses, detailed descriptions of root anatomical characteristics and their surrounding microenvironments, evaluation of the seed microbiota under flooding stress, the modification of gene expression, and evaluations of diverse germplasm collections.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24061","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, research on flooding stress and hypoxic responses in plants has gathered increasing attention due to climate change and the important role of O2 in metabolism and signalling. This Collection of Functional Plant Biology on 'Flooding stress and responses to hypoxia in plants' presents key contributions aimed at progressing our current understanding on how plants respond to low-O2 conditions, flooding stress and a combination of stresses commonly found in flooded areas. The Collection emphasises the characterisation of diverse plant responses across different developmental stages, from seed germination to fully developed plants, and under different water stress conditions ranging from waterlogging to complete submergence, or simply low-O2 conditions resulting from limited O2 diffusivity in bulky tissues. Additionally, this Collection highlights diverse approaches, including eco-physiological characterisation of plant responses, detailed descriptions of root anatomical characteristics and their surrounding microenvironments, evaluation of the seed microbiota under flooding stress, the modification of gene expression, and evaluations of diverse germplasm collections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
洪水胁迫和植物对缺氧的反应
近年来,由于气候变化以及氧气在新陈代谢和信号传递中的重要作用,有关植物洪涝胁迫和缺氧反应的研究日益受到关注。本《植物功能生物学文集》以 "植物的洪水胁迫和缺氧反应 "为主题,收录了一些重要文献,旨在加深我们对植物如何应对低氧气条件、洪水胁迫以及洪涝地区常见的多种胁迫的理解。该论文集强调了植物在不同发育阶段(从种子萌发到植株完全发育)以及不同水胁迫条件(从水涝到完全浸没)下的各种反应特征,或者仅仅是大体积组织中氧气扩散受限导致的低氧气条件。此外,该论文集还重点介绍了多种方法,包括植物反应的生态生理学特征、根部解剖特征及其周围微环境的详细描述、洪水胁迫下种子微生物群的评估、基因表达的改变以及对不同种质资源的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
期刊最新文献
Glycoside hydrolases reveals their differential role in response to drought and salt stress in potato (Solanum tuberosum) Coordination between water relations strategy and carbon investment in leaf and stem in six fruit tree species. Genome editing for improvement of biotic and abiotic stress tolerance in cereals. Investigating the combined effects of β-sitosterol and biochar on nutritional value and drought tolerance in Phaseolus vulgaris under drought stress. Augmenting the basis of lodging tolerance in wheat (Triticum aestivum) under natural and simulated conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1