首页 > 最新文献

Functional Plant Biology最新文献

英文 中文
Overexpression of AtNHX1 increases leaf potassium content by improving enrichment capacity in tobacco (Nicotiana tabacum) roots. 过表达 AtNHX1 可提高烟草(Nicotiana tabacum)根的富集能力,从而增加叶钾含量。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1071/FP24144
Yong Liu, Qian Hou, Kunle Dong, Yi Chen, Zhihong Wang, Shengdong Xie, Shengjiang Wu, Xiaoquan Zhang, Shizhou Yu, Zhixiao Yang

The NHX1 gene encodes a Na+ /H+ antiporter located in the tonoplast membrane, which plays critical role in regulating plant salt tolerance. It is also involved in the uptake and accumulation of K in plants; however, its precise mechanism is unknown. In this research, we elucidated the physiological basis underlying the increases in K content induced by NHX1 . We evaluated main agronomic traits, leaf K content, K+ uptake kinetics, and root morphological and physiological characteristics from field-planted and hydroponic plants. We included a wild-type tobacco (Nicotiana tabacum ) variety (K326) and three transgenic tobacco lines (NK7, NK9, NK10) that overexpress AtNHX1 from Arabidopsis thaliana . Results demonstrated that the agronomic performance of the AtNHX1 -overexpressing tobacco lines was similar to K326 in field and hydroponic settings. The three AtNHX1 -overexpressing tobacco lines had significantly higher leaf K contents than K326. Under hydroponic condition, enhanced K uptake capacity and a larger maximum K uptake rate were seen in AtNHX1 -overexpressing tobacco lines. AtNHX1 -overexpressing lines also exhibited significantly superior root morphological and physiological traits relative to K326, including root biomass, root volume, absorption area, root activity, cation exchange capacity, soluble protein content, and H+ -ATPase activity. Overexpression of AtNHX1 in tobacco significantly improves the K uptake and accumulation. Therefore, leaf K content greatly increased in these transgenic lines in the end. Our findings strongly suggest that AtNHX1 overexpression increased leaf K content by boosting the capacity of enriching K in tobacco roots, thereby advancing the understanding of the function of AtNHX1 .

NHX1 基因编码位于调质体膜上的 Na+ /H+ 反转运体,它在调节植物耐盐性方面起着关键作用。它还参与植物对 K 的吸收和积累,但其确切机制尚不清楚。在这项研究中,我们阐明了 NHX1 诱导钾含量增加的生理基础。我们评估了田间种植和水培植物的主要农艺性状、叶片 K 含量、K+ 吸收动力学以及根系形态和生理特征。研究对象包括一个野生型烟草(Nicotiana tabacum)品种(K326)和三个过表达拟南芥 AtNHX1 的转基因烟草品系(NK7、NK9 和 NK10)。结果表明,在田间和水培环境中,过表达 AtNHX1 的烟草品系的农艺表现与 K326 相似。三个 AtNHX1 外表达烟草品系的叶片 K 含量明显高于 K326。在水培条件下,AtNHX1 基因表达烟草品系的钾吸收能力增强,最大钾吸收率提高。与 K326 相比,AtNHX1 外表达株系的根系形态和生理性状也明显优于 K326,包括根系生物量、根系体积、吸收面积、根系活性、阳离子交换能力、可溶性蛋白含量和 H+ -ATPase 活性。在烟草中过表达 AtNHX1 能显著提高钾的吸收和积累。因此,这些转基因品系的叶片钾含量最终大大增加。我们的研究结果有力地表明,AtNHX1的过表达通过提高烟草根系富集钾的能力而增加了叶片钾的含量,从而推进了对AtNHX1功能的认识。
{"title":"Overexpression of <i>AtNHX1</i> increases leaf potassium content by improving enrichment capacity in tobacco (<i>Nicotiana tabacum</i>) roots.","authors":"Yong Liu, Qian Hou, Kunle Dong, Yi Chen, Zhihong Wang, Shengdong Xie, Shengjiang Wu, Xiaoquan Zhang, Shizhou Yu, Zhixiao Yang","doi":"10.1071/FP24144","DOIUrl":"https://doi.org/10.1071/FP24144","url":null,"abstract":"<p><p>The NHX1 gene encodes a Na+ /H+ antiporter located in the tonoplast membrane, which plays critical role in regulating plant salt tolerance. It is also involved in the uptake and accumulation of K in plants; however, its precise mechanism is unknown. In this research, we elucidated the physiological basis underlying the increases in K content induced by NHX1 . We evaluated main agronomic traits, leaf K content, K+ uptake kinetics, and root morphological and physiological characteristics from field-planted and hydroponic plants. We included a wild-type tobacco (Nicotiana tabacum ) variety (K326) and three transgenic tobacco lines (NK7, NK9, NK10) that overexpress AtNHX1 from Arabidopsis thaliana . Results demonstrated that the agronomic performance of the AtNHX1 -overexpressing tobacco lines was similar to K326 in field and hydroponic settings. The three AtNHX1 -overexpressing tobacco lines had significantly higher leaf K contents than K326. Under hydroponic condition, enhanced K uptake capacity and a larger maximum K uptake rate were seen in AtNHX1 -overexpressing tobacco lines. AtNHX1 -overexpressing lines also exhibited significantly superior root morphological and physiological traits relative to K326, including root biomass, root volume, absorption area, root activity, cation exchange capacity, soluble protein content, and H+ -ATPase activity. Overexpression of AtNHX1 in tobacco significantly improves the K uptake and accumulation. Therefore, leaf K content greatly increased in these transgenic lines in the end. Our findings strongly suggest that AtNHX1 overexpression increased leaf K content by boosting the capacity of enriching K in tobacco roots, thereby advancing the understanding of the function of AtNHX1 .</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput phenotyping of soybean (Glycine max) transpiration response curves to rising atmospheric drying in a mapping population. 在制图群体中对大豆(Glycine max)蒸腾作用对大气干燥上升的响应曲线进行高通量表型分析。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1071/FP23281
Daniel Monnens, José R López, Erik McCoy, Bishal G Tamang, Aaron J Lorenz, Walid Sadok

In soybean (Glycine max ), limiting whole-plant transpiration rate (TR) response to increasing vapor pressure deficit (VPD) has been associated with the 'slow-wilting' phenotype and with water-conservation enabling higher yields under terminal drought. Despite the promise of this trait, it is still unknown whether it has a genetic basis in soybean, a challenge limiting the prospects of breeding climate-resilient varieties. Here, we present the results of a first attempt at a high-throughput phenotyping of TR and stomatal conductance response curves to increasing VPD conducted on a soybean mapping population consisting of 140 recombinant inbred lines (RIL). This effort was conducted over two consecutive years, using a controlled-environment, gravimetric phenotyping platform that enabled characterizing 900 plants for these responses, yielding regression parameters (R 2 from 0.92 to 0.99) that were used for genetic mapping. Several quantitative trait loci (QTL) were identified for these parameters on chromosomes (Ch) 4, 6, and 10, including a VPD-conditional QTL on Ch 4 and a 'constitutive' QTL controlling all parameters on Ch 6. This study demonstrated for the first time that canopy water use in response to rising VPD has a genetic basis in soybean, opening novel avenues for identifying alleles enabling water conservation under current and future climate scenarios.

在大豆(Glycine max)中,限制全株蒸腾速率(TR)对蒸气压不足(VPD)增加的响应与 "慢萎 "表型以及在终旱条件下提高产量的节水作用有关。尽管这一性状前景广阔,但其在大豆中是否具有遗传基础仍不得而知,这一挑战限制了培育气候适应性品种的前景。在此,我们首次尝试在由 140 个重组近交系(RIL)组成的大豆图谱群体中,对 TR 和气孔导度对 VPD 增加的响应曲线进行高通量表型分析。这项工作连续进行了两年,使用的是一个可控环境重力表型平台,该平台可对 900 株植物的这些反应进行表征,得出的回归参数(R 2 在 0.92 到 0.99 之间)可用于基因图谱绘制。在 4 号、6 号和 10 号染色体上为这些参数确定了几个数量性状位点(QTL),包括 4 号染色体上的一个 VPD 条件 QTL 和 6 号染色体上的一个控制所有参数的 "组成型 "QTL。这项研究首次证明了大豆冠层水分利用对 VPD 上升的响应具有遗传基础,为鉴定等位基因开辟了新的途径,从而在当前和未来的气候条件下实现节水。
{"title":"High-throughput phenotyping of soybean (<i>Glycine max</i>) transpiration response curves to rising atmospheric drying in a mapping population.","authors":"Daniel Monnens, José R López, Erik McCoy, Bishal G Tamang, Aaron J Lorenz, Walid Sadok","doi":"10.1071/FP23281","DOIUrl":"https://doi.org/10.1071/FP23281","url":null,"abstract":"<p><p>In soybean (Glycine max ), limiting whole-plant transpiration rate (TR) response to increasing vapor pressure deficit (VPD) has been associated with the 'slow-wilting' phenotype and with water-conservation enabling higher yields under terminal drought. Despite the promise of this trait, it is still unknown whether it has a genetic basis in soybean, a challenge limiting the prospects of breeding climate-resilient varieties. Here, we present the results of a first attempt at a high-throughput phenotyping of TR and stomatal conductance response curves to increasing VPD conducted on a soybean mapping population consisting of 140 recombinant inbred lines (RIL). This effort was conducted over two consecutive years, using a controlled-environment, gravimetric phenotyping platform that enabled characterizing 900 plants for these responses, yielding regression parameters (R 2 from 0.92 to 0.99) that were used for genetic mapping. Several quantitative trait loci (QTL) were identified for these parameters on chromosomes (Ch) 4, 6, and 10, including a VPD-conditional QTL on Ch 4 and a 'constitutive' QTL controlling all parameters on Ch 6. This study demonstrated for the first time that canopy water use in response to rising VPD has a genetic basis in soybean, opening novel avenues for identifying alleles enabling water conservation under current and future climate scenarios.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142686501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exogenous nitric oxide extends longevity in cut Lilium tigrinum flowers by orchestrating biochemical and molecular aspects. 外源性一氧化氮通过协调生物化学和分子方面的作用延长了百合切花的寿命。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1071/FP24202
Moonisah Aftab, Haris Yousuf Lone, Aijaz A Wani, Mohamad Arif Zargar, Inayatullah Tahir

Senescence represents a developmentally orchestrated and precisely regulated cascade of events, culminating in the abscission of plant organs and ultimately leading to the demise of the plant or its constituent parts. In this study, we observed that senescence in cut Lilium tigrinum flowers is induced by elevated ABA levels and the hyperactivation of lipoxygenase (LOX) activity. This cascade increased ROS concentrations, heightened oxidative damage, and disrupted cellular redox equilibrium. This was evidenced by elevated lipid peroxidation, attenuated antioxidant machinery, and reduced membrane stability index (MSI). Despite its known role in delaying flower senescence, the specific biochemical and molecular mechanisms by which nitric oxide (NO) regulates senescence in cut L. tigrinum flowers are not fully elucidated. Specifically, the interactions between NO signaling and ABA metabolism, the regulation of protease activity, and the influence of NO-mediated ROS scavenging, senescence-associated gene expression requires further exploration. Exogenous application of sodium nitroprusside (SNP), a source of NO, mitigated senescence in L. tigrinum cut flowers by upregulating the activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and reducing the LOX activity, an indicator of lipid peroxidation. SNP treatment also downregulated the relative expression of senescence-associated gene (SAG12 ),lipoxygenase 1 (LOX1 ), and abscisic aldehyde oxidase 3 (AAO3 ). NO also upregulated defender against apoptotic death 1 (DAD1 ) expression correlated with minimized protease activity and reduced α-amino acid content in SNP-treated tepals. This regulation was accompanied by increased contents of sugars, proteins and phenols and reduced abscisic acid content, which collectively delayed the senesecence and enhanced the longevity of L. tigrinum cut flowers. This study demonstrates that exogenous SNP application can effectively mitigate senescence in cut L. tigrinum flowers by modulating antioxidant enzyme activities, reducing oxidative stress, and regulating the expression of key senescence-associated genes. This study unravels the complex molecular networks involved in NO-mediated senescence delay, which may lead to the development of innovative approaches for improving flower longevity.

衰老是一连串经过精心策划和精确调控的发育过程,其高潮是植物器官的脱落,最终导致植物或其组成部分的消亡。在这项研究中,我们观察到,ABA 水平的升高和脂氧合酶(LOX)活性的过度激活诱导了百合切花的衰老。这种级联反应增加了 ROS 浓度,加剧了氧化损伤,破坏了细胞的氧化还原平衡。具体表现为脂质过氧化反应加剧、抗氧化机制减弱以及膜稳定性指数(MSI)降低。尽管一氧化氮(NO)在延缓花朵衰老方面的作用众所周知,但一氧化氮调节虎尾兰切花衰老的具体生化和分子机制尚未完全阐明。具体来说,NO 信号传导与 ABA 代谢之间的相互作用、蛋白酶活性的调控以及 NO 介导的 ROS 清除、衰老相关基因表达的影响都需要进一步探索。通过上调超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)的活性以及降低脂质过氧化指标 LOX 的活性,外源施用硝普钠(SNP)(NO 的一种来源)减轻了虎尾兰切花的衰老。SNP 处理还下调了衰老相关基因(SAG12)、脂氧合酶 1(LOX1)和脱落酸醛氧化酶 3(AAO3)的相对表达。NO 还能上调抗凋亡防御因子 1(DAD1)的表达,这与 SNP 处理的花被片中蛋白酶活性降低和 α-氨基酸含量减少有关。这种调节还伴随着糖、蛋白质和酚类含量的增加以及脱落酸含量的减少,它们共同延缓了虎尾兰切花的衰老并延长了其寿命。本研究表明,外源 SNP 的应用可通过调节抗氧化酶活性、减少氧化应激和调控关键衰老相关基因的表达,有效缓解虎尾兰切花的衰老。这项研究揭示了氮氧化物介导的衰老延缓所涉及的复杂分子网络,可能有助于开发提高花卉寿命的创新方法。
{"title":"Exogenous nitric oxide extends longevity in cut <i>Lilium tigrinum</i> flowers by orchestrating biochemical and molecular aspects.","authors":"Moonisah Aftab, Haris Yousuf Lone, Aijaz A Wani, Mohamad Arif Zargar, Inayatullah Tahir","doi":"10.1071/FP24202","DOIUrl":"https://doi.org/10.1071/FP24202","url":null,"abstract":"<p><p>Senescence represents a developmentally orchestrated and precisely regulated cascade of events, culminating in the abscission of plant organs and ultimately leading to the demise of the plant or its constituent parts. In this study, we observed that senescence in cut Lilium tigrinum flowers is induced by elevated ABA levels and the hyperactivation of lipoxygenase (LOX) activity. This cascade increased ROS concentrations, heightened oxidative damage, and disrupted cellular redox equilibrium. This was evidenced by elevated lipid peroxidation, attenuated antioxidant machinery, and reduced membrane stability index (MSI). Despite its known role in delaying flower senescence, the specific biochemical and molecular mechanisms by which nitric oxide (NO) regulates senescence in cut L. tigrinum flowers are not fully elucidated. Specifically, the interactions between NO signaling and ABA metabolism, the regulation of protease activity, and the influence of NO-mediated ROS scavenging, senescence-associated gene expression requires further exploration. Exogenous application of sodium nitroprusside (SNP), a source of NO, mitigated senescence in L. tigrinum cut flowers by upregulating the activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and reducing the LOX activity, an indicator of lipid peroxidation. SNP treatment also downregulated the relative expression of senescence-associated gene (SAG12 ),lipoxygenase 1 (LOX1 ), and abscisic aldehyde oxidase 3 (AAO3 ). NO also upregulated defender against apoptotic death 1 (DAD1 ) expression correlated with minimized protease activity and reduced α-amino acid content in SNP-treated tepals. This regulation was accompanied by increased contents of sugars, proteins and phenols and reduced abscisic acid content, which collectively delayed the senesecence and enhanced the longevity of L. tigrinum cut flowers. This study demonstrates that exogenous SNP application can effectively mitigate senescence in cut L. tigrinum flowers by modulating antioxidant enzyme activities, reducing oxidative stress, and regulating the expression of key senescence-associated genes. This study unravels the complex molecular networks involved in NO-mediated senescence delay, which may lead to the development of innovative approaches for improving flower longevity.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overexpression of HvVDE gene improved light protection in transgenic tobacco (Nicotiana tabacum). 过表达 HvVDE 基因可提高转基因烟草(Nicotiana tabacum)的光保护能力。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1071/FP24180
Xiaojie Qu, Deyu Che, Fangting Qin, Guang Huang, Hongzhang Liu

Hosta is commonly acknowledged as a popular and preferred plant for landscaping and gardening. The 'sunburn' caused by prolonged exposure to strong sunlight is reducing the ornamental values of Hosta plants. However, there is a scarcity of research focusing on the genetic components linked to light-induced harm in Hosta . Here, the violaxanthin de-epoxidase (VDE) homolog from Hosta ventricosa was isolated and functionally identified through conducting HvVDE -overexpression tobacco (Nicotiana tabacum ) lines. The results showed that HvVDE encodes a putative protein comprising 481 amino acids with a molecular weight of 54.304kDa. The phylogenetic analysis found that HvVDE exhibited close similarity to JcVDE. Besides, the expression patterns of HvVDE found that HvVDE was expressed differently across tissues, withexpression induced by high light intensities. And overexpression of HvVDE led to the restoration of non-photochemical quenching in tobacco, suggesting that HvVDE plays a role in dissipating excess light energy as thermal energy in H. ventricosa . These findings underscore the significance of HvVDE in mitigating photoinhibition and enhancing photoprotection mechanisms in H. ventricosa .

玉簪是公认的美化环境和园艺的首选植物。长期暴露在强烈阳光下造成的 "日灼 "正在降低玉簪的观赏价值。然而,有关光诱导玉簪伤害的基因成分的研究却很少。在此,通过对烟草(Nicotiana tabacum)株系进行 HvVDE 基因表达,分离并鉴定了玉簪中的中黄素脱氧化酶(VDE)同源物。结果表明,HvVDE编码一个由481个氨基酸组成、分子量为54.304kDa的假定蛋白。系统进化分析发现,HvVDE与JcVDE具有近似性。此外,HvVDE的表达模式发现,HvVDE在不同组织中的表达量不同,高光照强度会诱导HvVDE的表达。而过量表达 HvVDE 会导致烟草非光化学淬灭的恢复,这表明 HvVDE 在文竹中起到了将多余光能转化为热能的作用。这些发现强调了 HvVDE 在缓解室盘菌的光抑制和增强光保护机制方面的重要作用。
{"title":"Overexpression of <i>HvVDE</i> gene improved light protection in transgenic tobacco (<i>Nicotiana tabacum</i>).","authors":"Xiaojie Qu, Deyu Che, Fangting Qin, Guang Huang, Hongzhang Liu","doi":"10.1071/FP24180","DOIUrl":"https://doi.org/10.1071/FP24180","url":null,"abstract":"<p><p>Hosta is commonly acknowledged as a popular and preferred plant for landscaping and gardening. The 'sunburn' caused by prolonged exposure to strong sunlight is reducing the ornamental values of Hosta plants. However, there is a scarcity of research focusing on the genetic components linked to light-induced harm in Hosta . Here, the violaxanthin de-epoxidase (VDE) homolog from Hosta ventricosa was isolated and functionally identified through conducting HvVDE -overexpression tobacco (Nicotiana tabacum ) lines. The results showed that HvVDE encodes a putative protein comprising 481 amino acids with a molecular weight of 54.304kDa. The phylogenetic analysis found that HvVDE exhibited close similarity to JcVDE. Besides, the expression patterns of HvVDE found that HvVDE was expressed differently across tissues, withexpression induced by high light intensities. And overexpression of HvVDE led to the restoration of non-photochemical quenching in tobacco, suggesting that HvVDE plays a role in dissipating excess light energy as thermal energy in H. ventricosa . These findings underscore the significance of HvVDE in mitigating photoinhibition and enhancing photoprotection mechanisms in H. ventricosa .</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alteration in certain growth, biochemical, and anatomical indices of grapevine (Vitis vinifera) in response to the foliar application of auxin under water deficit. 缺水条件下叶面喷施辅助素对葡萄树(Vitis vinifera)某些生长、生化和解剖指标的影响。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.1071/FP24059
Yaser Khandani, Hassan Sarikhani, Mansour Gholami, Abdolkarim Chehregani Rad, Siamak Shirani Bidabadi

Drought-induced stress represents one of the most economically detrimental natural phenomena impacting grapevine (Vitis vinifera ) development, yield, and fruit characteristics. Also, auxin is one of the most important plant growth regulators that can reduce damage caused by stress in plants. In this study, the impact of exogenously sprayed auxin (0, 50, and 200mgL-1 ) on growth, biochemical, and anatomical parameters was investigated in two grapevine varieties (cvs. 'Rashe' and 'Fakhri') under water deficit. According to our findings, water deficit led to a notable decrease in growth, protein content, and anatomical parameters; but significantly enhanced electrolyte leakage. Grapevines exposed to water deficit exhibited substantial increases in total phenolic compounds and antioxidant activity. Applying 50mgL-1 napthalene acetic acid (NAA) reduced the effects of water deficit in both grapevine cultivars by decreasing electrolyte leakage (15% in 'Rashe' and 20% in 'Fakhri'), and accumulating protein content (22% 'Rashe' and 32% 'Fakhri'), total phenolic compounds (33%'Rashe' and 40% 'Fakhri'), and antioxidant capacity (11% 'Rashe' and 39% 'Fakhri'); anantomical parameters were also improved. However, application of 200mgL-1 NAA had adverse effects on growth and biochemical traits of grapevines, with a more pronounced impact on root growth and anatomical parameters compared to other NAA concentrations. In conclusion, the application of 50mgL-1 NAA enhanced grapevine growth, enabling them to better thrive under water deficit.

干旱引起的胁迫是影响葡萄树(Vitis vinifera)生长发育、产量和果实特性的最具经济损失的自然现象之一。此外,辅助素也是最重要的植物生长调节剂之一,可以减轻胁迫对植物造成的伤害。本研究调查了外源喷洒的辅助素(0、50 和 200mgL-1 )对缺水条件下两个葡萄品种("Rashe "和 "Fakhri")的生长、生化和解剖参数的影响。根据我们的研究结果,缺水导致生长、蛋白质含量和解剖参数明显下降,但电解质渗漏却显著增加。在缺水条件下,葡萄的总酚类化合物和抗氧化活性大幅增加。施用 50mgL-1 的萘乙酸(NAA)可减少电解质渗漏('Rashe'为 15%,'Fakhri'为 20%),增加蛋白质含量('Rashe'为 22%,'Fakhri'为 32%)、总酚化合物含量('Rashe'为 33%,'Fakhri'为 40%)和抗氧化能力('Rashe'为 11%,'Fakhri'为 39%);反常参数也有所改善。然而,施用 200mgL-1 NAA 会对葡萄树的生长和生化性状产生不利影响,与其他 NAA 浓度相比,对根系生长和解剖参数的影响更为明显。总之,施用 50mgL-1 NAA 能促进葡萄树的生长,使其在缺水条件下更好地茁壮成长。
{"title":"Alteration in certain growth, biochemical, and anatomical indices of grapevine (<i>Vitis vinifera</i>) in response to the foliar application of auxin under water deficit.","authors":"Yaser Khandani, Hassan Sarikhani, Mansour Gholami, Abdolkarim Chehregani Rad, Siamak Shirani Bidabadi","doi":"10.1071/FP24059","DOIUrl":"https://doi.org/10.1071/FP24059","url":null,"abstract":"<p><p>Drought-induced stress represents one of the most economically detrimental natural phenomena impacting grapevine (Vitis vinifera ) development, yield, and fruit characteristics. Also, auxin is one of the most important plant growth regulators that can reduce damage caused by stress in plants. In this study, the impact of exogenously sprayed auxin (0, 50, and 200mgL-1 ) on growth, biochemical, and anatomical parameters was investigated in two grapevine varieties (cvs. 'Rashe' and 'Fakhri') under water deficit. According to our findings, water deficit led to a notable decrease in growth, protein content, and anatomical parameters; but significantly enhanced electrolyte leakage. Grapevines exposed to water deficit exhibited substantial increases in total phenolic compounds and antioxidant activity. Applying 50mgL-1 napthalene acetic acid (NAA) reduced the effects of water deficit in both grapevine cultivars by decreasing electrolyte leakage (15% in 'Rashe' and 20% in 'Fakhri'), and accumulating protein content (22% 'Rashe' and 32% 'Fakhri'), total phenolic compounds (33%'Rashe' and 40% 'Fakhri'), and antioxidant capacity (11% 'Rashe' and 39% 'Fakhri'); anantomical parameters were also improved. However, application of 200mgL-1 NAA had adverse effects on growth and biochemical traits of grapevines, with a more pronounced impact on root growth and anatomical parameters compared to other NAA concentrations. In conclusion, the application of 50mgL-1 NAA enhanced grapevine growth, enabling them to better thrive under water deficit.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclic electron flow and Photosystem II-less photosynthesis. 循环电子流和无光子系统 II 的光合作用。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.1071/FP24185
Maria Ermakova, Duncan Fitzpatrick, Anthony W D Larkum

Oxygenic photosynthesis is characterised by the cooperation of two photo-driven complexes, Photosystem II (PSII) and Photosystem I (PSI), sequentially linked through a series of redox-coupled intermediates. Divergent evolution has resulted in photosystems exhibiting complementary redox potentials, spanning the range necessary to oxidise water and reduce CO2 within a single system. Catalysing nature's most oxidising reaction to extract electrons from water is a highly specialised task that limits PSII's metabolic function. In contrast, potential electron donors in PSI span a range of redox potentials, enabling it to accept electrons from various metabolic processes. This metabolic flexibility of PSI underpins the capacity of photosynthetic organisms to balance energy supply with metabolic demands, which is key for adaptation to environmental changes. Here, we review the phenomenon of 'PSII-less photosynthesis' where PSI functions independently of PSII by operating cyclic electron flow using electrons derived from non-photochemical reactions. PSII-less photosynthesis enables supercharged ATP production and is employed, for example, by cyanobacteria's heterocysts to host nitrogen fixation and by bundle sheath cells of C4 plants to boost CO2 assimilation. We discuss the energetic benefits of this arrangement and the prospects of utilising it to improve the productivity and stress resilience of photosynthetic organisms.

氧光合作用的特点是两个光驱动复合体--光系统 II(PSII)和光系统 I(PSI)--的合作,它们通过一系列氧化还原耦合中间体依次连接起来。不同的进化使光合系统表现出互补的氧化还原电位,跨越了在单一系统中氧化水和还原二氧化碳所需的范围。催化自然界最具氧化性的反应以从水中提取电子是一项高度专业化的任务,限制了 PSII 的新陈代谢功能。与此相反,PSI 中的潜在电子供体具有不同的氧化还原电位,使其能够接受来自各种代谢过程的电子。PSI 的这种新陈代谢灵活性是光合作用生物体平衡能量供应与新陈代谢需求的基础,也是适应环境变化的关键。在这里,我们回顾了 "无 PSII 光合作用 "现象,即 PSI 利用来自非光化反应的电子进行循环电子流,从而独立于 PSII 发挥作用。无 PSII 光合作用可以产生超强的 ATP,例如,蓝藻的异囊可以利用它来进行固氮,C4 植物的束鞘细胞可以利用它来促进 CO2 同化。我们将讨论这种安排的能量优势,以及利用它提高光合生物的生产力和抗压能力的前景。
{"title":"Cyclic electron flow and Photosystem II-less photosynthesis.","authors":"Maria Ermakova, Duncan Fitzpatrick, Anthony W D Larkum","doi":"10.1071/FP24185","DOIUrl":"https://doi.org/10.1071/FP24185","url":null,"abstract":"<p><p>Oxygenic photosynthesis is characterised by the cooperation of two photo-driven complexes, Photosystem II (PSII) and Photosystem I (PSI), sequentially linked through a series of redox-coupled intermediates. Divergent evolution has resulted in photosystems exhibiting complementary redox potentials, spanning the range necessary to oxidise water and reduce CO2 within a single system. Catalysing nature's most oxidising reaction to extract electrons from water is a highly specialised task that limits PSII's metabolic function. In contrast, potential electron donors in PSI span a range of redox potentials, enabling it to accept electrons from various metabolic processes. This metabolic flexibility of PSI underpins the capacity of photosynthetic organisms to balance energy supply with metabolic demands, which is key for adaptation to environmental changes. Here, we review the phenomenon of 'PSII-less photosynthesis' where PSI functions independently of PSII by operating cyclic electron flow using electrons derived from non-photochemical reactions. PSII-less photosynthesis enables supercharged ATP production and is employed, for example, by cyanobacteria's heterocysts to host nitrogen fixation and by bundle sheath cells of C4 plants to boost CO2 assimilation. We discuss the energetic benefits of this arrangement and the prospects of utilising it to improve the productivity and stress resilience of photosynthetic organisms.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cerium oxide nanoparticles promoted lateral root formation in Arabidopsis by modulating reactive oxygen species and Ca2+ level. 纳米氧化铈颗粒通过调节活性氧和 Ca2+ 水平促进拟南芥侧根的形成
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.1071/FP24196
Guangjing Li, Quanlong Gao, Ashadu Nyande, Zihao Dong, Ehtisham Hassan Khan, Yuqian Han, Honghong Wu

Roots play an important role in plant growth, including providing essential mechanical support, water uptake, and nutrient absorption. Nanomaterials play a positive role in improving plant root development, but there is limited knowledge of how nanomaterials affect lateral root (LR) formation. Poly (acrylic) acid coated nanoceria (cerium oxide nanoparticles, PNC) are commonly used to improve plant stress tolerance due to their ability to scavenge reactive oxygen species (ROS). However, its impact on LR formation remains unclear. In this study, we investigated the effects of PNC on LR formation in Arabidopsis thaliana by monitoring ROS levels and Ca2+ distribution in roots. Our results demonstrate that PNC significantly promote LR formation, increasing LR numbers by 26.2%. Compared to controls, PNC-treated Arabidopsis seedlings exhibited reduced H2 O2 levels by 18.9% in primary roots (PRs) and 40.6% in LRs, as well as decreased O 2 · - levels by 47.7% in PRs and 88.5% in LRs. When compared with control plants, Ca2+ levels were reduced by 35.7% in PRs and 22.7% in LRs of PNC-treated plants. Overall, these results indicate that PNC could enhance LR development by modulating ROS and Ca2+ levels in roots.

根系在植物生长中发挥着重要作用,包括提供必要的机械支持、水分吸收和养分吸收。纳米材料在改善植物根系发育方面发挥着积极作用,但人们对纳米材料如何影响侧根(LR)形成的了解还很有限。由于具有清除活性氧(ROS)的能力,聚丙烯酸包覆的纳米铈(氧化铈纳米颗粒,PNC)通常用于提高植物的抗逆性。然而,其对 LR 形成的影响仍不清楚。在本研究中,我们通过监测根中的 ROS 水平和 Ca2+ 分布,研究了 PNC 对拟南芥 LR 形成的影响。结果表明,PNC 能显著促进 LR 的形成,使 LR 数量增加 26.2%。与对照组相比,经 PNC 处理的拟南芥幼苗的主根(PRs)中 H2 O2 水平降低了 18.9%,LRs 中降低了 40.6%,PRs 中 O 2 - 水平降低了 47.7%,LRs 中降低了 88.5%。与对照植物相比,经 PNC 处理的植物的 PR 和 LR 中的 Ca2+ 水平分别降低了 35.7% 和 22.7%。总之,这些结果表明,PNC 可通过调节根中的 ROS 和 Ca2+ 水平促进 LR 发育。
{"title":"Cerium oxide nanoparticles promoted lateral root formation in <i>Arabidopsis</i> by modulating reactive oxygen species and Ca<sup>2+</sup> level.","authors":"Guangjing Li, Quanlong Gao, Ashadu Nyande, Zihao Dong, Ehtisham Hassan Khan, Yuqian Han, Honghong Wu","doi":"10.1071/FP24196","DOIUrl":"https://doi.org/10.1071/FP24196","url":null,"abstract":"<p><p>Roots play an important role in plant growth, including providing essential mechanical support, water uptake, and nutrient absorption. Nanomaterials play a positive role in improving plant root development, but there is limited knowledge of how nanomaterials affect lateral root (LR) formation. Poly (acrylic) acid coated nanoceria (cerium oxide nanoparticles, PNC) are commonly used to improve plant stress tolerance due to their ability to scavenge reactive oxygen species (ROS). However, its impact on LR formation remains unclear. In this study, we investigated the effects of PNC on LR formation in Arabidopsis thaliana by monitoring ROS levels and Ca2+ distribution in roots. Our results demonstrate that PNC significantly promote LR formation, increasing LR numbers by 26.2%. Compared to controls, PNC-treated Arabidopsis seedlings exhibited reduced H2 O2 levels by 18.9% in primary roots (PRs) and 40.6% in LRs, as well as decreased O 2 · - levels by 47.7% in PRs and 88.5% in LRs. When compared with control plants, Ca2+ levels were reduced by 35.7% in PRs and 22.7% in LRs of PNC-treated plants. Overall, these results indicate that PNC could enhance LR development by modulating ROS and Ca2+ levels in roots.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional and transcriptional regulation of the anthocyanidin acyl modifier gene Gs5AT of Gentiana sino-ornata. 秦艽花青素酰基修饰基因 Gs5AT 的功能和转录调控。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.1071/FP23143
Han Meng, Siqi Chen, Yanmei Wu, Xuehua Jin

The Chinese gentian, Gentiana sino-ornata produces brilliant blue flowers. To investigate the biological function and transcriptional regulation mechanism of the anthocyanin 5-O-acyltransferase gene (Gs5AT ) in the corolla, it is beneficial to analyse the mechanism of blue flower colour presentation. In this investigation, we obtained the CDS and promoter sequences of the gene Gs5AT . Yeast one-hybrid experiments were used to identify the transcription factor GsbHLH7 that activates the gene Gs5AT . According to quantitive reverse transcription polymerase chain reaction analysis, the expression of the gene Gs5AT was significantly and positively correlated with the gene GsbHLH7 . The colour phenotype of the flowers was significantly altered by the virus-induced gene silencing transduction of Gs5AT and GsbHLH7 , with GsbHLH7 silencing producing more pronounced changes in the corolla colour than Gs5AT . The expression of GsF3'5'H , GsDFR , GsANS , Gs3GT , and Gs5GT all fell to varying degrees after GsbHLH7 silencing, indicating that GsbHLH7 may regulate transcription of these genes as well as Gs5AT . The results of this study indicate that Gs5AT was positively regulated by the GsbHLH7 , and thus affects the colour presentation of the blue corolla.

中国龙胆(Gentiana sino-ornata)能开出艳丽的蓝色花朵。研究花冠中花青素 5-O-酰基转移酶基因(Gs5AT)的生物学功能和转录调控机制,有利于分析蓝花呈现的机理。本研究获得了花青素 5-O-酰基转移酶基因 Gs5AT 的 CDS 和启动子序列。酵母单杂交实验确定了激活 Gs5AT 基因的转录因子 GsbHLH7。根据定量反转录聚合酶链反应分析,基因 Gs5AT 的表达与基因 GsbHLH7 呈显著正相关。病毒诱导的 Gs5AT 和 GsbHLH7 基因沉默转导明显改变了花朵的颜色表型,其中 GsbHLH7 基因沉默转导产生的花冠颜色变化比 Gs5AT 更明显。沉默 GsbHLH7 后,GsF3'5'H、GsDFR、GsANS、Gs3GT 和 Gs5GT 的表达量均有不同程度的下降,表明 GsbHLH7 可能与 Gs5AT 一样调控这些基因的转录。本研究结果表明,Gs5AT 受 GsbHLH7 的正向调控,从而影响蓝色花冠的颜色表现。
{"title":"Functional and transcriptional regulation of the anthocyanidin acyl modifier gene <i>Gs5AT</i> of <i>Gentiana sino-ornata</i>.","authors":"Han Meng, Siqi Chen, Yanmei Wu, Xuehua Jin","doi":"10.1071/FP23143","DOIUrl":"https://doi.org/10.1071/FP23143","url":null,"abstract":"<p><p>The Chinese gentian, Gentiana sino-ornata produces brilliant blue flowers. To investigate the biological function and transcriptional regulation mechanism of the anthocyanin 5-O-acyltransferase gene (Gs5AT ) in the corolla, it is beneficial to analyse the mechanism of blue flower colour presentation. In this investigation, we obtained the CDS and promoter sequences of the gene Gs5AT . Yeast one-hybrid experiments were used to identify the transcription factor GsbHLH7 that activates the gene Gs5AT . According to quantitive reverse transcription polymerase chain reaction analysis, the expression of the gene Gs5AT was significantly and positively correlated with the gene GsbHLH7 . The colour phenotype of the flowers was significantly altered by the virus-induced gene silencing transduction of Gs5AT and GsbHLH7 , with GsbHLH7 silencing producing more pronounced changes in the corolla colour than Gs5AT . The expression of GsF3'5'H , GsDFR , GsANS , Gs3GT , and Gs5GT all fell to varying degrees after GsbHLH7 silencing, indicating that GsbHLH7 may regulate transcription of these genes as well as Gs5AT . The results of this study indicate that Gs5AT was positively regulated by the GsbHLH7 , and thus affects the colour presentation of the blue corolla.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142462368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foliar-applied silicon and zinc nanoparticles improve plant growth, biochemical attributes, and essential oil profile of fennel (Foeniculum vulgare) under different irrigation regimes. 在不同灌溉制度下,叶面喷施硅纳米颗粒和锌纳米颗粒可改善茴香(Foeniculum vulgare)的植物生长、生化属性和精油特征。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.1071/FP24149
Hossein Mosaedi, Hamid Mozafari, Behzad Sani, Abdollah Ghasemi Pirbalouti, Faezeh Rajabzadeh

The comparative efficacy of silicon (Si) and zinc (Zn) nanoparticles (NPs) in mitigating drought stress in fennel (Foeniculum vulgare ) remains largely unexplored. This study evaluated the impact of Si NPs and Zn NPs on enhancing plant growth and physiological-biochemical attributes of fennel under varying irrigation regimes. The 2-year study was a split-pot design with irrigation at three irrigation levels (100, 75, and 50% field capacity, FC) and five treatments of foliar application of Si and Zn NPs (control, 1mM Si NP, 2mM Si NP, 1mM Zn NP, 2mM Zn NP). Results showed that drought stress reduced plant performance. Increases in superoxide dismutase (SOD, 131%) and catalase (CAT, 276%) were seen after a 50% FC drought without the use of Si and Zn NPs. Conversely, biological yield (34%), seed yield (44%), chlorophyll a +b (26%), relative water content (RWC, 21%), and essential oil (EO) yield (50%) were all reduced. However, application of Zn and Si, particularly 1mM Si and 2mM Zn, greatly mitigated drought stress via lowering CAT and SOD activity and enhancing plant yield, chlorophyll content, RWC, and EO. The composition of the EO consisted primarily of anethole, followed by limonene, fenchone, and estragole. During drought conditions, monoterpene hydrocarbons increased while oxygenated monoterpenes decreased. The opposite trend was observed for Si and Zn NPs. Our results suggest that applying Zn NPs at 2mM followed by Si NPs at 1mM improved plant resilience and EO yield in fennel plants under water stress.

硅(Si)和锌(Zn)纳米粒子(NPs)在减轻茴香(Foeniculum vulgare)干旱胁迫方面的功效比较在很大程度上仍未得到探讨。本研究评估了硅纳米粒子和锌纳米粒子在不同灌溉制度下对促进茴香植物生长和生理生化属性的影响。这项为期两年的研究采用分盆设计,灌溉水平为三种(100%、75% 和 50% 田间灌溉能力,FC),叶面喷施 Si 和 Zn NPs 的处理为五种(对照、1mM Si NP、2mM Si NP、1mM Zn NP、2mM Zn NP)。结果表明,干旱胁迫降低了植物的表现。在不使用 Si NPs 和 Zn NPs 的情况下,50% FC 干旱后超氧化物歧化酶(SOD,131%)和过氧化氢酶(CAT,276%)增加。相反,生物产量(34%)、种子产量(44%)、叶绿素 a +b (26%)、相对含水量 (RWC, 21%) 和精油 (EO) 产量 (50%) 都有所降低。然而,施用锌和硅,尤其是 1mM 硅和 2mM 锌,可降低 CAT 和 SOD 活性,提高植物产量、叶绿素含量、相对含水量和 EO,从而大大缓解干旱胁迫。环氧乙烷的成分主要是茴香醚,其次是柠檬烯、葑酮和雌甾醇。在干旱条件下,单萜烯碳氢化合物增加,而含氧单萜烯减少。而 Si 和 Zn NPs 则呈现出相反的趋势。我们的研究结果表明,施用 2 毫摩尔的 Zn NPs 和 1 毫摩尔的 Si NPs 可以提高茴香植物在水分胁迫下的抗逆性和环氧乙烷产量。
{"title":"Foliar-applied silicon and zinc nanoparticles improve plant growth, biochemical attributes, and essential oil profile of fennel (<i>Foeniculum vulgare</i>) under different irrigation regimes.","authors":"Hossein Mosaedi, Hamid Mozafari, Behzad Sani, Abdollah Ghasemi Pirbalouti, Faezeh Rajabzadeh","doi":"10.1071/FP24149","DOIUrl":"https://doi.org/10.1071/FP24149","url":null,"abstract":"<p><p>The comparative efficacy of silicon (Si) and zinc (Zn) nanoparticles (NPs) in mitigating drought stress in fennel (Foeniculum vulgare ) remains largely unexplored. This study evaluated the impact of Si NPs and Zn NPs on enhancing plant growth and physiological-biochemical attributes of fennel under varying irrigation regimes. The 2-year study was a split-pot design with irrigation at three irrigation levels (100, 75, and 50% field capacity, FC) and five treatments of foliar application of Si and Zn NPs (control, 1mM Si NP, 2mM Si NP, 1mM Zn NP, 2mM Zn NP). Results showed that drought stress reduced plant performance. Increases in superoxide dismutase (SOD, 131%) and catalase (CAT, 276%) were seen after a 50% FC drought without the use of Si and Zn NPs. Conversely, biological yield (34%), seed yield (44%), chlorophyll a +b (26%), relative water content (RWC, 21%), and essential oil (EO) yield (50%) were all reduced. However, application of Zn and Si, particularly 1mM Si and 2mM Zn, greatly mitigated drought stress via lowering CAT and SOD activity and enhancing plant yield, chlorophyll content, RWC, and EO. The composition of the EO consisted primarily of anethole, followed by limonene, fenchone, and estragole. During drought conditions, monoterpene hydrocarbons increased while oxygenated monoterpenes decreased. The opposite trend was observed for Si and Zn NPs. Our results suggest that applying Zn NPs at 2mM followed by Si NPs at 1mM improved plant resilience and EO yield in fennel plants under water stress.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and characterisation of 'No apical meristem; Arabidopsis transcription activation factor; Cup-shape cotyledon' (NAC) family transcription factors involved in sugar accumulation and abscisic acid signalling in grape (Vitis vinifera). 参与葡萄(Vitis vinifera)糖分积累和脱落酸信号传导的 "无顶端分生组织;拟南芥转录激活因子;杯状子叶"(NAC)家族转录因子的鉴定和特征描述。
IF 2.6 4区 生物学 Q2 PLANT SCIENCES Pub Date : 2024-10-01 DOI: 10.1071/FP24207
Shuang Xia, Xinyuan Qi, Jinli Yang, Qiaoyun Deng, Xiuqin Wang

The 'No apical meristem; Arabidopsis transcription activation factor; Cup-shape cotyledon' (NAC) transcription factors are pivotal in plant development and stress response. Sucrose-non-fermenting-related protein kinase 1.2 (SnRK1) is a key enzyme in glucose metabolism and ABA signalling. In this study, we used grape (Vitis vinifera ) calli to explore NAC's roles in sugar and ABA pathways and its relationship with VvSnRK1.2 . We identified 19 VvNACs highly expressed at 90days after blooming, coinciding with grape maturity and high sugar accumulation, and 11 VvNACs randomly selected from 19 were demonstrated in response to sugar and ABA treatments. VvNAC26 showed significant response to sugar and ABA treatments, and its protein, as a nucleus protein, had transcriptional activation in yeast. We obtained the overexpression (OE-VvNAC26 ) and RNA-inhibition (RNAi-VvNAC26 ) of VvNAC26 in transgenic calli by Agrobacterium tumefaciens -mediated transformation. We found that VvNAC26 negatively influenced fructose content. Under sugar and ABA treatments, VvNAC26 negatively influenced the expression of most sugar-related genes, while positively influencing the expression of most ABA pathway-related genes. Dual-luciferase reporter experiments demonstrated that VvNAC26 significantly upregulates VvSnRK1.2 promoter expression in tobacco (Nicotiana benthamiana ) leaves, although this process in grape calli requires ABA. The levels of sugar content, sugar-related genes, and ABA-related genes fluctuated significantly in OE-VvNAC26 +RNAi-VvSnRK1.2 and OE-VvSnRK1.2 +RNAi-VvNAC26 transgenic calli. These findings indicated that VvNAC26 regulates sugar metabolism and ABA pathway, displaying synergistic interactions with VvSnRK1.2 .

无顶端分生组织;拟南芥转录激活因子;杯状子叶"(NAC)转录因子在植物发育和胁迫响应中起着关键作用。蔗糖不发酵相关蛋白激酶 1.2(SnRK1)是葡萄糖代谢和 ABA 信号传导的关键酶。在这项研究中,我们利用葡萄(Vitis vinifera)胼胝体来探索 NAC 在糖和 ABA 通路中的作用及其与 VvSnRK1.2 的关系。我们确定了 19 个 VvNACs,它们在葡萄开花后 90 天高度表达,与葡萄成熟和高糖积累相吻合,并从 19 个 VvNACs 中随机选择了 11 个 VvNACs 对糖和 ABA 处理的响应进行了展示。VvNAC26 对糖和 ABA 处理有明显反应,其蛋白作为一种细胞核蛋白,在酵母中具有转录激活作用。我们通过农杆菌介导的转化,在转基因胼胝体中获得了 VvNAC26 的过表达(OE-VvNAC26)和 RNA 抑制(RNAi-VvNAC26)。我们发现 VvNAC26 对果糖含量有负面影响。在糖和 ABA 处理下,VvNAC26 对大多数糖相关基因的表达有负面影响,而对大多数 ABA 途径相关基因的表达有正面影响。双荧光素酶报告实验表明,VvNAC26 能显著上调烟草(Nicotiana benthamiana)叶片中 VvSnRK1.2 启动子的表达,但这一过程在葡萄胼胝体中需要 ABA。在 OE-VvNAC26 +RNAi-VvSnRK1.2 和 OE-VvSnRK1.2 +RNAi-VvNAC26 转基因胼胝体中,糖含量、糖相关基因和 ABA 相关基因的水平波动很大。这些发现表明,VvNAC26 调节糖代谢和 ABA 通路,与 VvSnRK1.2 有协同作用。
{"title":"Identification and characterisation of 'No apical meristem; <i>Arabidopsis</i> transcription activation factor; Cup-shape cotyledon' (NAC) family transcription factors involved in sugar accumulation and abscisic acid signalling in grape (<i>Vitis vinifera</i>).","authors":"Shuang Xia, Xinyuan Qi, Jinli Yang, Qiaoyun Deng, Xiuqin Wang","doi":"10.1071/FP24207","DOIUrl":"https://doi.org/10.1071/FP24207","url":null,"abstract":"<p><p>The 'No apical meristem; Arabidopsis transcription activation factor; Cup-shape cotyledon' (NAC) transcription factors are pivotal in plant development and stress response. Sucrose-non-fermenting-related protein kinase 1.2 (SnRK1) is a key enzyme in glucose metabolism and ABA signalling. In this study, we used grape (Vitis vinifera ) calli to explore NAC's roles in sugar and ABA pathways and its relationship with VvSnRK1.2 . We identified 19 VvNACs highly expressed at 90days after blooming, coinciding with grape maturity and high sugar accumulation, and 11 VvNACs randomly selected from 19 were demonstrated in response to sugar and ABA treatments. VvNAC26 showed significant response to sugar and ABA treatments, and its protein, as a nucleus protein, had transcriptional activation in yeast. We obtained the overexpression (OE-VvNAC26 ) and RNA-inhibition (RNAi-VvNAC26 ) of VvNAC26 in transgenic calli by Agrobacterium tumefaciens -mediated transformation. We found that VvNAC26 negatively influenced fructose content. Under sugar and ABA treatments, VvNAC26 negatively influenced the expression of most sugar-related genes, while positively influencing the expression of most ABA pathway-related genes. Dual-luciferase reporter experiments demonstrated that VvNAC26 significantly upregulates VvSnRK1.2 promoter expression in tobacco (Nicotiana benthamiana ) leaves, although this process in grape calli requires ABA. The levels of sugar content, sugar-related genes, and ABA-related genes fluctuated significantly in OE-VvNAC26 +RNAi-VvSnRK1.2 and OE-VvSnRK1.2 +RNAi-VvNAC26 transgenic calli. These findings indicated that VvNAC26 regulates sugar metabolism and ABA pathway, displaying synergistic interactions with VvSnRK1.2 .</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Functional Plant Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1