Autophagosome biogenesis and organelle homeostasis in plant cells.

IF 10 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Cell Pub Date : 2024-09-03 DOI:10.1093/plcell/koae099
Xiaohong Zhuang, Baiying Li, Liwen Jiang
{"title":"Autophagosome biogenesis and organelle homeostasis in plant cells.","authors":"Xiaohong Zhuang, Baiying Li, Liwen Jiang","doi":"10.1093/plcell/koae099","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy is one of the major highly inducible degradation processes in response to plant developmental and environmental signals. In response to different stimuli, cellular materials, including proteins and organelles, can be sequestered into a double membrane autophagosome structure either selectively or nonselectively. The formation of an autophagosome as well as its delivery into the vacuole involves complex and dynamic membrane processes. The identification and characterization of the conserved autophagy-related (ATG) proteins and their related regulators have greatly advanced our understanding of the molecular mechanism underlying autophagosome biogenesis and function in plant cells. Autophagosome biogenesis is tightly regulated by the coordination of multiple ATG and non-ATG proteins and by selective cargo recruitment. This review updates our current knowledge of autophagosome biogenesis, with special emphasis on the core molecular machinery that drives autophagosome formation and autophagosome-organelle interactions under abiotic stress conditions.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371174/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae099","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Autophagy is one of the major highly inducible degradation processes in response to plant developmental and environmental signals. In response to different stimuli, cellular materials, including proteins and organelles, can be sequestered into a double membrane autophagosome structure either selectively or nonselectively. The formation of an autophagosome as well as its delivery into the vacuole involves complex and dynamic membrane processes. The identification and characterization of the conserved autophagy-related (ATG) proteins and their related regulators have greatly advanced our understanding of the molecular mechanism underlying autophagosome biogenesis and function in plant cells. Autophagosome biogenesis is tightly regulated by the coordination of multiple ATG and non-ATG proteins and by selective cargo recruitment. This review updates our current knowledge of autophagosome biogenesis, with special emphasis on the core molecular machinery that drives autophagosome formation and autophagosome-organelle interactions under abiotic stress conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物细胞中自噬体的生物生成和细胞器的平衡。
自噬是响应植物发育和环境信号的主要高度诱导降解过程之一。在不同刺激的作用下,细胞物质(包括蛋白质和细胞器)可选择性或非选择性地螯合到双膜自噬体结构中。自噬体的形成及其向液泡的输送涉及复杂而动态的膜过程。对保守的自噬相关(ATG)蛋白及其相关调控因子的鉴定和表征极大地促进了我们对植物细胞中自噬体生物发生和功能的分子机制的了解。自噬体的生物发生受到多种 ATG 蛋白和非 ATG 蛋白的协调以及选择性货物招募的严格调控。本综述更新了我们目前对自噬体生物发生的认识,特别强调了驱动自噬体形成的核心分子机制,以及非生物胁迫条件下自噬体与细胞器之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Cell
Plant Cell 生物-生化与分子生物学
CiteScore
16.90
自引率
5.20%
发文量
337
审稿时长
2.4 months
期刊介绍: Title: Plant Cell Publisher: Published monthly by the American Society of Plant Biologists (ASPB) Produced by Sheridan Journal Services, Waterbury, VT History and Impact: Established in 1989 Within three years of publication, ranked first in impact among journals in plant sciences Maintains high standard of excellence Scope: Publishes novel research of special significance in plant biology Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience Tenets: Publish the most exciting, cutting-edge research in plant cellular and molecular biology Provide rapid turnaround time for reviewing and publishing research papers Ensure highest quality reproduction of data Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.
期刊最新文献
Small protein, big effects: ENOD93 alters mitochondrial ATP production to favor nitrogen assimilation in plants. The strigolactone receptor DWARF14 regulates flowering time in Arabidopsis. MAC3A and MAC3B mediate degradation of the transcription factor ERF13 and thus promote lateral root emergence. Rapid depletion of target proteins in plants by an inducible protein degradation system. Proteolytic control of the RNA silencing machinery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1