Robust estimation of a regression function in exponential families

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Journal of Statistical Planning and Inference Pub Date : 2024-03-24 DOI:10.1016/j.jspi.2024.106167
Yannick Baraud, Juntong Chen
{"title":"Robust estimation of a regression function in exponential families","authors":"Yannick Baraud,&nbsp;Juntong Chen","doi":"10.1016/j.jspi.2024.106167","DOIUrl":null,"url":null,"abstract":"<div><p>We observe <span><math><mi>n</mi></math></span> pairs of independent (but not necessarily i.i.d.) random variables <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and tackle the problem of estimating the conditional distributions <span><math><mrow><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⋆</mo></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> of <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> given <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span> for all <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></mrow></math></span>. Even though these might not be true, we base our estimator on the assumptions that the data are i.i.d. and the conditional distributions of <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> given <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span> belong to a one parameter exponential family <span><math><mover><mrow><mi>Q</mi></mrow><mo>¯</mo></mover></math></span> with parameter space given by an interval <span><math><mi>I</mi></math></span>. More precisely, we pretend that these conditional distributions take the form <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>θ</mi><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></msub><mo>∈</mo><mover><mrow><mi>Q</mi></mrow><mo>¯</mo></mover></mrow></math></span> for some <span><math><mi>θ</mi></math></span> that belongs to a VC-class <span><math><mover><mrow><mi>Θ</mi></mrow><mo>¯</mo></mover></math></span> of functions with values in <span><math><mi>I</mi></math></span>. For each <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></mrow></math></span>, we estimate <span><math><mrow><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⋆</mo></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> by a distribution of the same form, i.e. <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mover><mrow><mi>θ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></msub><mo>∈</mo><mover><mrow><mi>Q</mi></mrow><mo>¯</mo></mover></mrow></math></span>, where <span><math><mrow><mover><mrow><mi>θ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mo>=</mo><mover><mrow><mi>θ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is a well-chosen estimator with values in <span><math><mover><mrow><mi>Θ</mi></mrow><mo>¯</mo></mover></math></span>. We establish non-asymptotic exponential inequalities for the upper deviations of a Hellinger-type distance between the true conditional distributions of the data and the estimated one based on the exponential family <span><math><mover><mrow><mi>Q</mi></mrow><mo>¯</mo></mover></math></span> and the class of functions <span><math><mover><mrow><mi>Θ</mi></mrow><mo>¯</mo></mover></math></span> we chose. We show that our estimation strategy is robust to model misspecification, contamination and the presence of outliers. Besides, when the data are truly i.i.d., the exponential family <span><math><mover><mrow><mi>Q</mi></mrow><mo>¯</mo></mover></math></span> is suitably parametrized and the conditional distributions <span><math><mrow><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⋆</mo></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> of the form <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><msup><mrow><mi>θ</mi></mrow><mrow><mo>⋆</mo></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></msub><mo>∈</mo><mover><mrow><mi>Q</mi></mrow><mo>¯</mo></mover></mrow></math></span> for some unknown Hölderian function <span><math><msup><mrow><mi>θ</mi></mrow><mrow><mo>⋆</mo></mrow></msup></math></span> with values in <span><math><mi>I</mi></math></span>, we prove that the estimator <span><math><mover><mrow><mi>θ</mi></mrow><mrow><mo>̂</mo></mrow></mover></math></span> of <span><math><msup><mrow><mi>θ</mi></mrow><mrow><mo>⋆</mo></mrow></msup></math></span> is minimax (up to a logarithmic factor). Finally, we provide an algorithm for calculating <span><math><mover><mrow><mi>θ</mi></mrow><mrow><mo>̂</mo></mrow></mover></math></span> when <span><math><mover><mrow><mi>Θ</mi></mrow><mo>¯</mo></mover></math></span> is a VC-class of functions of low or moderate dimension and we carry out a simulation study to compare its performance to that of the MLE and median-based estimators. The proof of our main result relies on an upper bound, with explicit numerical constants, on the expectation of the supremum of an empirical process over a VC-subgraph class. This bound can be of independent interest.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"233 ","pages":"Article 106167"},"PeriodicalIF":0.8000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000247","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We observe n pairs of independent (but not necessarily i.i.d.) random variables X1=(W1,Y1),,Xn=(Wn,Yn) and tackle the problem of estimating the conditional distributions Qi(wi) of Yi given Wi=wi for all i{1,,n}. Even though these might not be true, we base our estimator on the assumptions that the data are i.i.d. and the conditional distributions of Yi given Wi=wi belong to a one parameter exponential family Q¯ with parameter space given by an interval I. More precisely, we pretend that these conditional distributions take the form Qθ(wi)Q¯ for some θ that belongs to a VC-class Θ¯ of functions with values in I. For each i{1,,n}, we estimate Qi(wi) by a distribution of the same form, i.e. Qθ̂(wi)Q¯, where θ̂=θ̂(X1,,Xn) is a well-chosen estimator with values in Θ¯. We establish non-asymptotic exponential inequalities for the upper deviations of a Hellinger-type distance between the true conditional distributions of the data and the estimated one based on the exponential family Q¯ and the class of functions Θ¯ we chose. We show that our estimation strategy is robust to model misspecification, contamination and the presence of outliers. Besides, when the data are truly i.i.d., the exponential family Q¯ is suitably parametrized and the conditional distributions Qi(wi) of the form Qθ(wi)Q¯ for some unknown Hölderian function θ with values in I, we prove that the estimator θ̂ of θ is minimax (up to a logarithmic factor). Finally, we provide an algorithm for calculating θ̂ when Θ¯ is a VC-class of functions of low or moderate dimension and we carry out a simulation study to compare its performance to that of the MLE and median-based estimators. The proof of our main result relies on an upper bound, with explicit numerical constants, on the expectation of the supremum of an empirical process over a VC-subgraph class. This bound can be of independent interest.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
指数族回归函数的稳健估计
我们观察到 n 对独立(但不一定是 i.i.d.)的随机变量 X1=(W1,Y1),......,Xn=(Wn,Yn),要解决的问题是估计所有 i∈{1,...,n}中 Wi=wi 给定 Yi 的条件分布 Qi⋆(wi)。尽管这些可能都不是真的,但我们的估计基于以下假设:数据为 i.i.d.,给定 Wi=wi 的 Yi 的条件分布属于单参数指数族 Q¯,参数空间由区间 I 给出。更确切地说,我们假定这些条件分布的形式为 Qθ(wi)∈Q¯,其中某个 θ 属于 VC 类 Θ¯ 的函数,其值在 I 中。对于每个 i∈{1,...,n},我们用相同形式的分布来估计 Qi⋆(wi),即 Qθ̂(wi)∈Q¯,其中 θ̂=θ̂(X1,...,Xn)是一个值在Θ¯中的精心选择的估计值。我们根据指数族 Q¯ 和我们选择的函数 Θ¯ 类,建立了数据真实条件分布与估计值之间海灵格型距离上偏差的非渐近指数不等式。我们的研究表明,我们的估计策略对模型错误、污染和异常值的存在都很稳健。此外,当数据是真正的 i.i.d.,指数族 Q¯ 被适当地参数化,并且条件分布 Qi⋆(wi)的形式为 Qθ⋆(wi)∈Q¯ 对于某个未知的霍尔德函数 θ⋆,其值在 I 中时,我们证明了 θ⋆ 的估计器 θ ̂ 是最小的(达到对数因子)。最后,我们提供了一种算法,用于在 Θ¯ 是低维或中维函数的 VC 类时计算 θ ̂,并进行了模拟研究,将其性能与 MLE 和基于中值的估计器进行了比较。我们主要结果的证明依赖于对 VC 子图类上经验过程的上确界期望的上界,并带有明确的数值常数。这个上界可以引起独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference 数学-统计学与概率论
CiteScore
2.10
自引率
11.10%
发文量
78
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists. We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.
期刊最新文献
The two-sample location shift model under log-concavity On cross-validated estimation of skew normal model Editorial Board Model averaging prediction for survival data with time-dependent effects Marginally constrained nonparametric Bayesian inference through Gaussian processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1