{"title":"Deciphering the complex interplay between gut microbiota and crop residue breakdown in forager and hive bees (Apis mellifera L.)","authors":"M.N. Rudra Gouda , K.M. Kumaranag , B. Ramakrishnan , Sabtharishi Subramanian","doi":"10.1016/j.crmicr.2024.100233","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates <em>A. mellifera</em> gut microbiota diversity and enzymatic activities, aiming to utilize identified isolates for practical applications in sustainable crop residue management and soil health enhancement. This study sampled honey bees, analyzed gut bacterial diversity via 16S rRNA gene, and screened isolates for cellulolytic, hemicellulolytic, and pectinolytic activities, with subsequent assessment of enzymatic potential. The study reveals that cellulolytic and hemicellulolytic bacterial isolates, mainly from γ-Proteobacteria, Actinobacteria, and Firmicutes, have significant potential for crop residue management. Some genera, like <em>Aneurinibacillus, Bacillus, Clostridium, Enterobacter, Serratia, Stenotrophomonas, Apilactobacillus, Lysinibacillus</em>, and <em>Pseudomonas</em>, are very good at breaking down cellulose and hemicellulase. Notable cellulose-degrading genera include <em>Cedecea</em> (1.390 ± 0.57), <em>Clostridium</em> (1.360 ± 0.86 U/mg), <em>Enterobacter</em> (1.493 ± 1.10 U/mg), <em>Klebsiella</em> (1.380 ± 2.03 U/mg), and <em>Serratia</em> (1.402 ± 0.31 U/mg), while <em>Aneurinibacillus</em> (1.213 ± 1.12 U/mg), <em>Bacillus</em> (3.119 ± 0.55 U/mg), <em>Enterobacter</em> (1.042 ± 0.14 U/mg), <em>Serratia</em> (1.589 ± 0.05 U/mg), and <em>Xanthomonas</em> (1.156 ± 0.08 U/mg) excel in hemicellulase activity. Specific isolates with high cellulolytic and hemicellulolytic activities are identified, highlighting their potential for crop residue management. The research explores gut bacterial compartmentalization in <em>A. mellifera</em>, emphasising gut physiology's role in cellulose and hemicellulose digestion. Pectinolytic activity is observed, particularly in the Bacillaceae clade (3.229 ± 0.02), contributing to understanding the honey bee gut microbiome. The findings offer insights into microbiome diversity and enzymatic capabilities, with implications for biotechnological applications in sustainable crop residue management. The study concludes by emphasizing the need for ongoing research to uncover underlying mechanisms and ecological factors influencing gut microbiota, impacting honey bee health, colony dynamics, and advancements in crop residue management.</p></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":"6 ","pages":"Article 100233"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666517424000154/pdfft?md5=e1dd4b0d8c4f945bb2f1bd5092257c92&pid=1-s2.0-S2666517424000154-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666517424000154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates A. mellifera gut microbiota diversity and enzymatic activities, aiming to utilize identified isolates for practical applications in sustainable crop residue management and soil health enhancement. This study sampled honey bees, analyzed gut bacterial diversity via 16S rRNA gene, and screened isolates for cellulolytic, hemicellulolytic, and pectinolytic activities, with subsequent assessment of enzymatic potential. The study reveals that cellulolytic and hemicellulolytic bacterial isolates, mainly from γ-Proteobacteria, Actinobacteria, and Firmicutes, have significant potential for crop residue management. Some genera, like Aneurinibacillus, Bacillus, Clostridium, Enterobacter, Serratia, Stenotrophomonas, Apilactobacillus, Lysinibacillus, and Pseudomonas, are very good at breaking down cellulose and hemicellulase. Notable cellulose-degrading genera include Cedecea (1.390 ± 0.57), Clostridium (1.360 ± 0.86 U/mg), Enterobacter (1.493 ± 1.10 U/mg), Klebsiella (1.380 ± 2.03 U/mg), and Serratia (1.402 ± 0.31 U/mg), while Aneurinibacillus (1.213 ± 1.12 U/mg), Bacillus (3.119 ± 0.55 U/mg), Enterobacter (1.042 ± 0.14 U/mg), Serratia (1.589 ± 0.05 U/mg), and Xanthomonas (1.156 ± 0.08 U/mg) excel in hemicellulase activity. Specific isolates with high cellulolytic and hemicellulolytic activities are identified, highlighting their potential for crop residue management. The research explores gut bacterial compartmentalization in A. mellifera, emphasising gut physiology's role in cellulose and hemicellulose digestion. Pectinolytic activity is observed, particularly in the Bacillaceae clade (3.229 ± 0.02), contributing to understanding the honey bee gut microbiome. The findings offer insights into microbiome diversity and enzymatic capabilities, with implications for biotechnological applications in sustainable crop residue management. The study concludes by emphasizing the need for ongoing research to uncover underlying mechanisms and ecological factors influencing gut microbiota, impacting honey bee health, colony dynamics, and advancements in crop residue management.