Revisiting plant electric signaling: Challenging an old phenomenon with novel discoveries

IF 8.3 2区 生物学 Q1 PLANT SCIENCES Current opinion in plant biology Pub Date : 2024-03-28 DOI:10.1016/j.pbi.2024.102528
Juan Camilo Barbosa-Caro , Michael M. Wudick
{"title":"Revisiting plant electric signaling: Challenging an old phenomenon with novel discoveries","authors":"Juan Camilo Barbosa-Caro ,&nbsp;Michael M. Wudick","doi":"10.1016/j.pbi.2024.102528","DOIUrl":null,"url":null,"abstract":"<div><p>Higher plants efficiently orchestrate rapid systemic responses to diverse environmental stimuli through electric signaling. This review explores the mechanisms underlying two main types of electric signals in plants, action potentials (APs) and slow wave potentials (SWPs), and how new discoveries challenge conventional neurophysiological paradigms traditionally forming their theoretical foundations. Animal APs are biophysically well-defined, whereas plant APs are often classified based on their shape, lacking thorough characterization. SWPs are depolarizing electric signals deviating from this shape, leading to an oversimplified classification of plant electric signals. Indeed, investigating the generation and propagation of plant APs and SWPs showcases a complex interplay of mechanisms that sustain self-propagating signals and internally propagating stimuli, resulting in membrane depolarization, cytosolic calcium increase, and alterations in reactive oxygen species and pH. A holistic understanding of plant electric signaling will rely on unraveling the network of ion-conducting proteins, signaling molecules, and mechanisms for signal generation and propagation.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"79 ","pages":"Article 102528"},"PeriodicalIF":8.3000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000190/pdfft?md5=bc4f38418174f87de82784659087cbc2&pid=1-s2.0-S1369526624000190-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624000190","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Higher plants efficiently orchestrate rapid systemic responses to diverse environmental stimuli through electric signaling. This review explores the mechanisms underlying two main types of electric signals in plants, action potentials (APs) and slow wave potentials (SWPs), and how new discoveries challenge conventional neurophysiological paradigms traditionally forming their theoretical foundations. Animal APs are biophysically well-defined, whereas plant APs are often classified based on their shape, lacking thorough characterization. SWPs are depolarizing electric signals deviating from this shape, leading to an oversimplified classification of plant electric signals. Indeed, investigating the generation and propagation of plant APs and SWPs showcases a complex interplay of mechanisms that sustain self-propagating signals and internally propagating stimuli, resulting in membrane depolarization, cytosolic calcium increase, and alterations in reactive oxygen species and pH. A holistic understanding of plant electric signaling will rely on unraveling the network of ion-conducting proteins, signaling molecules, and mechanisms for signal generation and propagation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新审视植物电信号:用新发现挑战旧现象
高等植物通过电信号有效地协调对各种环境刺激的快速系统反应。这篇综述探讨了植物中两种主要类型的电信号--动作电位(APs)和慢波电位(SWPs)--的内在机制,以及新发现如何挑战传统的神经生理学范式,这些范式传统上构成了它们的理论基础。动物的动作电位在生物物理学上定义明确,而植物的动作电位通常根据其形状进行分类,缺乏全面的特征描述。SWP 是偏离这种形状的去极化电信号,导致植物电信号的分类过于简单。事实上,研究植物 APs 和 SWPs 的产生和传播,可以发现维持自传播信号和内部传播刺激的复杂相互作用机制,导致膜去极化、细胞膜钙增加以及活性氧和 pH 值的改变。要全面了解植物电信号,就必须解开离子传导蛋白、信号分子以及信号产生和传播机制的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Grass awns: Morphological diversity arising from developmental constraint New perspectives of post-GWAS analyses: From markers to causal genes for more precise crop breeding Beat the heat: Breeding, genomics, and gene editing for high nighttime temperature tolerance in rice Gene regulatory networks in abiotic stress responses via single-cell sequencing and spatial technologies: Advances and opportunities Chitins and chitosans–A tale of discovery and disguise, of attachment and attainment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1