{"title":"Research on parameter identification of fracture model for titanium alloy under wide stress triaxiality based on machine learning","authors":"","doi":"10.1007/s40436-024-00487-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The abilities to describe the fracture behavior and calibrate the relevant parameters are essential factors in evaluating ductile fracture criteria of titanium alloys. In this study, 14 different shapes and notched specimens were designed for uniaxial tensile and compression experiments to characterize their ductile fracture behaviors. Based on the analysis of plastic behavior and fracture mechanism, a mixed hardening model, the Von Mises yield criterion and DF2016 fracture criterion were established, respectively. A parameter-identification method based on machine learning was proposed to improve the parameter calibration of the ductile fracture model. The results showed that the DF2016 fracture model accurately predicted the damage initiation and fracture process of the forged TC4 titanium alloy during the forming process. The machine-learning method avoided extracting different stress state evolution processes and large amounts of data from the numerical model of the calibrated specimens. The combination of the semi-coupled fracture model and parameter-identification method provides a new method that alleviates the difficulty of balancing parameter calibration and the ability to characterize the ductile fracture criteria.</p>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"46 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40436-024-00487-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The abilities to describe the fracture behavior and calibrate the relevant parameters are essential factors in evaluating ductile fracture criteria of titanium alloys. In this study, 14 different shapes and notched specimens were designed for uniaxial tensile and compression experiments to characterize their ductile fracture behaviors. Based on the analysis of plastic behavior and fracture mechanism, a mixed hardening model, the Von Mises yield criterion and DF2016 fracture criterion were established, respectively. A parameter-identification method based on machine learning was proposed to improve the parameter calibration of the ductile fracture model. The results showed that the DF2016 fracture model accurately predicted the damage initiation and fracture process of the forged TC4 titanium alloy during the forming process. The machine-learning method avoided extracting different stress state evolution processes and large amounts of data from the numerical model of the calibrated specimens. The combination of the semi-coupled fracture model and parameter-identification method provides a new method that alleviates the difficulty of balancing parameter calibration and the ability to characterize the ductile fracture criteria.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.