{"title":"ARSL-V: A risk-aware relay selection scheme using reinforcement learning in VANETs","authors":"Xuejiao Liu, Chuanhua Wang, Lingfeng Huang, Yingjie Xia","doi":"10.1007/s12083-023-01589-4","DOIUrl":null,"url":null,"abstract":"<p>In high-speed and dynamic Vehicular Ad-hoc Networks (VANETs), cooperative transmission mechanism is a promising scheme to ensure the sustainable transmission of data. However, due to the possible malicious behavior of vehicles and the dynamic network topology of VANETs, not all vehicles are trustworthy to become relays and perform the cooperative transmission task reliably. Therefore, how to ensure the security and reliability of the selected vehicles is still an urgent problem to be solved. In this paper, we propose a risk-aware relay selection scheme (ARSL-V) using reinforcement learning in VANETs. Specifically, we design a risk assessment mechanism based on multiple parameters to dynamically assess the potential risk of relay vehicles by considering the reputation variability, abnormal behavior, and environmental impact of vehicles. Also, we model the relay selection problem as an improved Kuhn-Munkres algorithm based on the risk assessment to realize relay selection in multi-relay and multi-target vehicle scenarios. Besides, we use a reinforcement learning algorithm combined with feedback data to achieve dynamic adjustment of the parameter weights. Simulation results show that compared with the existing schemes, ARSL-V can improve the detection rate of malicious behavior and cooperative transmission success rate by about 25% and 6%, respectively.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"33 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-023-01589-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In high-speed and dynamic Vehicular Ad-hoc Networks (VANETs), cooperative transmission mechanism is a promising scheme to ensure the sustainable transmission of data. However, due to the possible malicious behavior of vehicles and the dynamic network topology of VANETs, not all vehicles are trustworthy to become relays and perform the cooperative transmission task reliably. Therefore, how to ensure the security and reliability of the selected vehicles is still an urgent problem to be solved. In this paper, we propose a risk-aware relay selection scheme (ARSL-V) using reinforcement learning in VANETs. Specifically, we design a risk assessment mechanism based on multiple parameters to dynamically assess the potential risk of relay vehicles by considering the reputation variability, abnormal behavior, and environmental impact of vehicles. Also, we model the relay selection problem as an improved Kuhn-Munkres algorithm based on the risk assessment to realize relay selection in multi-relay and multi-target vehicle scenarios. Besides, we use a reinforcement learning algorithm combined with feedback data to achieve dynamic adjustment of the parameter weights. Simulation results show that compared with the existing schemes, ARSL-V can improve the detection rate of malicious behavior and cooperative transmission success rate by about 25% and 6%, respectively.
期刊介绍:
The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security.
The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain.
Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.