Quantitative analysis of the hexamethylenetetramine concentration in a hexamethylenetetramine–acetic acid solution using near infrared spectroscopy: A comprehensive study on preprocessing methods and variable selection techniques

IF 1.6 4区 化学 Q3 CHEMISTRY, APPLIED Journal of Near Infrared Spectroscopy Pub Date : 2024-03-26 DOI:10.1177/09670335241242659
Hui Chao, Shichuan Qian, Zhi Wang, Xin Sheng, Xinping Zhao, Zhiyan Lu, Xiaoxia Li, Yinguang Xu, Shaohua Jin, Lijie Li, Kun Chen
{"title":"Quantitative analysis of the hexamethylenetetramine concentration in a hexamethylenetetramine–acetic acid solution using near infrared spectroscopy: A comprehensive study on preprocessing methods and variable selection techniques","authors":"Hui Chao, Shichuan Qian, Zhi Wang, Xin Sheng, Xinping Zhao, Zhiyan Lu, Xiaoxia Li, Yinguang Xu, Shaohua Jin, Lijie Li, Kun Chen","doi":"10.1177/09670335241242659","DOIUrl":null,"url":null,"abstract":"Hexamethylenetetramine (HA) is widely used as a raw material in the medical, chemical, industrial, and military industries, and the fast and quantitative analysis of HA is important for manufacturing processes in these fields. Owing to its efficiency, low cost, nondestructive testing, and convenience, near infrared (NIR) spectroscopy is a powerful technique for quantitatively analyzing the HA concentration in HA–acetic acid (HAc) solutions, demonstrating application potential in the production of hexogen and octogen. A series of preprocessing algorithms and variable selection methods were studied to improve the detection accuracy of the NIR spectroscopic calibration. Forty-six different combinations of standard normal variation (SNV), multiplicative signal correction (MSC), first derivative (1stDer), second derivative (2ndDer), and discrete wavelet transform (DWT) were screened. The effects of four variable selection methods (successive projection algorithm (SPA), uninformed variable elimination (UVE), competitive adaptive reweighted sampling (CARS), and multiverse optimization (MVO)) were compared. Finally, a model (SPXY-SNV-1stDer-DWT-MVO-RF) was developed by combining sample set portioning based on the joint x–y distance (SPXY) algorithm with the random forest (RF) calibration model, and MVO was combined with the NIR technique for the first time. The model achieved a coefficient of determination for the calibration set (R<jats:sup>2</jats:sup>), root mean square error of the calibration set (RMSEC), coefficient of determination for the prediction set (r<jats:sup>2</jats:sup>), and root mean square error of the prediction set (RMSEP) of 1.000, 0.04%, 0.999, and 0.05%, respectively. This study demonstrated the novelty and feasibility of HA quantitative detection by NIR spectroscopy and provided valuable insights for optimizing quantitative analysis models by optimizing algorithms, indicating the great application potential of NIR spectroscopy in related fields.","PeriodicalId":16551,"journal":{"name":"Journal of Near Infrared Spectroscopy","volume":"157 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Near Infrared Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09670335241242659","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Hexamethylenetetramine (HA) is widely used as a raw material in the medical, chemical, industrial, and military industries, and the fast and quantitative analysis of HA is important for manufacturing processes in these fields. Owing to its efficiency, low cost, nondestructive testing, and convenience, near infrared (NIR) spectroscopy is a powerful technique for quantitatively analyzing the HA concentration in HA–acetic acid (HAc) solutions, demonstrating application potential in the production of hexogen and octogen. A series of preprocessing algorithms and variable selection methods were studied to improve the detection accuracy of the NIR spectroscopic calibration. Forty-six different combinations of standard normal variation (SNV), multiplicative signal correction (MSC), first derivative (1stDer), second derivative (2ndDer), and discrete wavelet transform (DWT) were screened. The effects of four variable selection methods (successive projection algorithm (SPA), uninformed variable elimination (UVE), competitive adaptive reweighted sampling (CARS), and multiverse optimization (MVO)) were compared. Finally, a model (SPXY-SNV-1stDer-DWT-MVO-RF) was developed by combining sample set portioning based on the joint x–y distance (SPXY) algorithm with the random forest (RF) calibration model, and MVO was combined with the NIR technique for the first time. The model achieved a coefficient of determination for the calibration set (R2), root mean square error of the calibration set (RMSEC), coefficient of determination for the prediction set (r2), and root mean square error of the prediction set (RMSEP) of 1.000, 0.04%, 0.999, and 0.05%, respectively. This study demonstrated the novelty and feasibility of HA quantitative detection by NIR spectroscopy and provided valuable insights for optimizing quantitative analysis models by optimizing algorithms, indicating the great application potential of NIR spectroscopy in related fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用近红外光谱定量分析六亚甲基四胺乙酸溶液中的六亚甲基四胺浓度:关于预处理方法和变量选择技术的综合研究
六亚甲基四胺(HA)作为一种原材料被广泛应用于医疗、化工、工业和军事领域,对其进行快速定量分析对这些领域的生产工艺非常重要。近红外(NIR)光谱技术具有高效、低成本、无损检测和便捷等优点,是定量分析 HA-乙酸(HAc)溶液中 HA 浓度的有力技术,在六元和八元生产中具有应用潜力。为了提高近红外光谱校准的检测精度,研究人员研究了一系列预处理算法和变量选择方法。筛选了标准正态变异(SNV)、乘法信号校正(MSC)、一阶导数(1stDer)、二阶导数(2ndDer)和离散小波变换(DWT)的 46 种不同组合。比较了四种变量选择方法(连续投影算法(SPA)、无信息变量消除(UVE)、竞争性自适应加权采样(CARS)和多元宇宙优化(MVO))的效果。最后,通过将基于联合 x-y 距离(SPXY)算法的样本集分配与随机森林(RF)校准模型相结合,建立了一个模型(SPXY-SNV-1stDer-DWT-MVO-RF),并首次将 MVO 与近红外技术相结合。该模型的定标集决定系数(R2)、定标集均方根误差(RMSEC)、预测集决定系数(r2)和预测集均方根误差(RMSEP)分别为 1.000、0.04%、0.999 和 0.05%。该研究证明了利用近红外光谱对 HA 进行定量检测的新颖性和可行性,并为通过优化算法来优化定量分析模型提供了宝贵的启示,表明近红外光谱技术在相关领域具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
35
审稿时长
6 months
期刊介绍: JNIRS — Journal of Near Infrared Spectroscopy is a peer reviewed journal, publishing original research papers, short communications, review articles and letters concerned with near infrared spectroscopy and technology, its application, new instrumentation and the use of chemometric and data handling techniques within NIR.
期刊最新文献
Non-linear machine learning coupled near infrared spectroscopy enhanced model performance and insights for coffee origin traceability Using visible and near infrared spectroscopy and machine learning for estimating total petroleum hydrocarbons in contaminated soils Detection and classification of spongy tissue disorder in mango fruit during ripening by using visible-near infrared spectroscopy and multivariate analysis A method to standardize the temperature for near infrared spectra of the indigo pigment in non-dairy cream based on symbolic regression Moisture content of Panax notoginseng taproot predicted using near infrared spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1