Ole Øystein Knudsen, Eystein Vada, Waldemar Krieger, Jan Bertram, Ivana Jevremovic, Håvard Wilson
{"title":"Cathodic protection of aluminium in seawater","authors":"Ole Øystein Knudsen, Eystein Vada, Waldemar Krieger, Jan Bertram, Ivana Jevremovic, Håvard Wilson","doi":"10.1002/maco.202314229","DOIUrl":null,"url":null,"abstract":"Cathodic protection of various 6000 aluminium alloys and variants of EN AW‐5083 in seawater has been studied. The alloys were immersed in seawater and polarized to about −1.06 V versus Ag/AgCl for 1 year. The cathodic current density increased initially due to formation of a copper film on the surface, but the effect was temporary. After 200 days, the current demand for cathodic protection had stabilized on all the investigated alloys at 0 to about 20 mA/m<jats:sup>2</jats:sup>, depending on the Fe/Si ratio in the alloy. Depending on the content of noble intermetallic particles, the aluminium will corrode at a low and constant rate. Application of a coating on the aluminium will decrease the cathodic current demand for cathodic protection significantly. Coatings on submerged aluminium are very stable and not susceptible to degradation mechanisms like cathodic disbonding.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/maco.202314229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cathodic protection of various 6000 aluminium alloys and variants of EN AW‐5083 in seawater has been studied. The alloys were immersed in seawater and polarized to about −1.06 V versus Ag/AgCl for 1 year. The cathodic current density increased initially due to formation of a copper film on the surface, but the effect was temporary. After 200 days, the current demand for cathodic protection had stabilized on all the investigated alloys at 0 to about 20 mA/m2, depending on the Fe/Si ratio in the alloy. Depending on the content of noble intermetallic particles, the aluminium will corrode at a low and constant rate. Application of a coating on the aluminium will decrease the cathodic current demand for cathodic protection significantly. Coatings on submerged aluminium are very stable and not susceptible to degradation mechanisms like cathodic disbonding.