Ole Øystein Knudsen, Eystein Vada, Waldemar Krieger, Jan Bertram, Ivana Jevremovic, Håvard Wilson
{"title":"Cathodic protection of aluminium in seawater","authors":"Ole Øystein Knudsen, Eystein Vada, Waldemar Krieger, Jan Bertram, Ivana Jevremovic, Håvard Wilson","doi":"10.1002/maco.202314229","DOIUrl":null,"url":null,"abstract":"<p>Cathodic protection of various 6000 aluminium alloys and variants of EN AW-5083 in seawater has been studied. The alloys were immersed in seawater and polarized to about −1.06 V versus Ag/AgCl for 1 year. The cathodic current density increased initially due to formation of a copper film on the surface, but the effect was temporary. After 200 days, the current demand for cathodic protection had stabilized on all the investigated alloys at 0 to about 20 mA/m<sup>2</sup>, depending on the Fe/Si ratio in the alloy. Depending on the content of noble intermetallic particles, the aluminium will corrode at a low and constant rate. Application of a coating on the aluminium will decrease the cathodic current demand for cathodic protection significantly. Coatings on submerged aluminium are very stable and not susceptible to degradation mechanisms like cathodic disbonding.</p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"76 6","pages":"822-832"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/maco.202314229","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion-werkstoffe Und Korrosion","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/maco.202314229","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cathodic protection of various 6000 aluminium alloys and variants of EN AW-5083 in seawater has been studied. The alloys were immersed in seawater and polarized to about −1.06 V versus Ag/AgCl for 1 year. The cathodic current density increased initially due to formation of a copper film on the surface, but the effect was temporary. After 200 days, the current demand for cathodic protection had stabilized on all the investigated alloys at 0 to about 20 mA/m2, depending on the Fe/Si ratio in the alloy. Depending on the content of noble intermetallic particles, the aluminium will corrode at a low and constant rate. Application of a coating on the aluminium will decrease the cathodic current demand for cathodic protection significantly. Coatings on submerged aluminium are very stable and not susceptible to degradation mechanisms like cathodic disbonding.
期刊介绍:
Materials and Corrosion is the leading European journal in its field, providing rapid and comprehensive coverage of the subject and specifically highlighting the increasing importance of corrosion research and prevention.
Several sections exclusive to Materials and Corrosion bring you closer to the current events in the field of corrosion research and add to the impact this journal can make on your work.