{"title":"Stable photocurrent–voltage characteristics of perovskite single crystal detectors obtained by pulsed bias","authors":"Xin Liu, Zhi-Long Chen, Hu Wang, Wen-Qing Zhang, Hao Dong, Peng-Xiang Wang, Yu-Chuan Shao","doi":"10.1088/1674-1056/ad23d7","DOIUrl":null,"url":null,"abstract":"Photocurrent–voltage characterization is a crucial method for assessing key parameters in x-ray or <italic toggle=\"yes\">γ</italic>-ray semiconductor detectors, especially the carrier mobility lifetime product. However, the high biases during photocurrent measurements tend to cause severe ion migration, which can lead to the instability and inaccuracy of the test results. Given the mixed electronic–ionic characteristics, it is imperative to devise novel methods capable of precisely measuring photocurrent–voltage characteristics under high bias conditions, free from interference caused by ion migration. In this paper, pulsed bias is employed to explore the photocurrent–voltage characteristics of MAPbBr<sub>3</sub> single crystals. The method yields stable photocurrent–voltage characteristics at a pulsed bias of up to 30 V, proving to be effective in mitigating ion migration. Through fitting the modified Hecht equation, we determined the mobility lifetime products of 1.0 × 10<sup>−2</sup> cm<sup>2</sup>⋅V<sup>−1</sup> for hole and 2.78 × 10<sup>−3</sup> cm<sup>2</sup>⋅V<sup>−1</sup> for electron. This approach offers a promising solution for accurately measuring the transport properties of carriers in perovskite.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"33 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad23d7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photocurrent–voltage characterization is a crucial method for assessing key parameters in x-ray or γ-ray semiconductor detectors, especially the carrier mobility lifetime product. However, the high biases during photocurrent measurements tend to cause severe ion migration, which can lead to the instability and inaccuracy of the test results. Given the mixed electronic–ionic characteristics, it is imperative to devise novel methods capable of precisely measuring photocurrent–voltage characteristics under high bias conditions, free from interference caused by ion migration. In this paper, pulsed bias is employed to explore the photocurrent–voltage characteristics of MAPbBr3 single crystals. The method yields stable photocurrent–voltage characteristics at a pulsed bias of up to 30 V, proving to be effective in mitigating ion migration. Through fitting the modified Hecht equation, we determined the mobility lifetime products of 1.0 × 10−2 cm2⋅V−1 for hole and 2.78 × 10−3 cm2⋅V−1 for electron. This approach offers a promising solution for accurately measuring the transport properties of carriers in perovskite.
期刊介绍:
Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics.
Subject coverage includes:
Condensed matter physics and the physics of materials
Atomic, molecular and optical physics
Statistical, nonlinear and soft matter physics
Plasma physics
Interdisciplinary physics.