High-performance broadband SnS photodetector based on photoconductive-bolometric coupling effect

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY 2D Materials Pub Date : 2024-03-01 DOI:10.1088/2053-1583/ad2c11
Bo Zhang, Yunjie Liu, Bing Hu, Fuhai Guo, Mingcong Zhang, Siqi Li, Weizhuo Yu, Lanzhong Hao
{"title":"High-performance broadband SnS photodetector based on photoconductive-bolometric coupling effect","authors":"Bo Zhang, Yunjie Liu, Bing Hu, Fuhai Guo, Mingcong Zhang, Siqi Li, Weizhuo Yu, Lanzhong Hao","doi":"10.1088/2053-1583/ad2c11","DOIUrl":null,"url":null,"abstract":"Due to its large absorption coefficient and high carrier mobility, SnS exhibits strong promise in the area of optoelectronic devices. Nevertheless, the fabrication of large-area, high-quality films for SnS photodetectors (PDs) with superior photoresponse remains a formidable task, seriously limiting its further practical application. In the present study, we report a superior-performance broadband PD founded on the epitaxial SnS film. Large-area uniform SnS films were grown epitaxially on (100)-oriented KBr using magnetron sputtering technique, further exfoliated, and transferred in a wafer size to fabricated two-ends PD devices. Benefitting from high crystallization and unique photoconductive-bolometric coupling effect, the two modes of operation exhibit a wide range of spectral responses from the visible to near-infrared wavelength (405–1920 nm). Particularly noteworthy is the SnS device fabricated, which demonstrates an impressive responsivity of 95.5 A W<sup>−1</sup> and a detectivity of 7.8 × 10<sup>11</sup> Jones, outperforming other devices by 1–2 orders of magnitude. In addition, SnS PD shows excellent environmental durability. This work provides a robust approach to develop high-performance broadband SnS PDs, while simultaneously offering deep insight into the light–matter interactions.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad2c11","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its large absorption coefficient and high carrier mobility, SnS exhibits strong promise in the area of optoelectronic devices. Nevertheless, the fabrication of large-area, high-quality films for SnS photodetectors (PDs) with superior photoresponse remains a formidable task, seriously limiting its further practical application. In the present study, we report a superior-performance broadband PD founded on the epitaxial SnS film. Large-area uniform SnS films were grown epitaxially on (100)-oriented KBr using magnetron sputtering technique, further exfoliated, and transferred in a wafer size to fabricated two-ends PD devices. Benefitting from high crystallization and unique photoconductive-bolometric coupling effect, the two modes of operation exhibit a wide range of spectral responses from the visible to near-infrared wavelength (405–1920 nm). Particularly noteworthy is the SnS device fabricated, which demonstrates an impressive responsivity of 95.5 A W−1 and a detectivity of 7.8 × 1011 Jones, outperforming other devices by 1–2 orders of magnitude. In addition, SnS PD shows excellent environmental durability. This work provides a robust approach to develop high-performance broadband SnS PDs, while simultaneously offering deep insight into the light–matter interactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光电导-浮力耦合效应的高性能宽带 SnS 光电探测器
由于具有大吸收系数和高载流子迁移率,SnS 在光电器件领域大有可为。然而,要为具有优异光响应的 SnS 光电探测器(PD)制备大面积、高质量的薄膜仍然是一项艰巨的任务,严重限制了其进一步的实际应用。在本研究中,我们报告了一种基于外延 SnS 薄膜的高性能宽带 PD。我们利用磁控溅射技术在取向为(100)的 KBr 上外延生长了大面积均匀的 SnS 薄膜,并对其进行了进一步剥离,然后以晶圆尺寸转移到两端 PD 器件中。得益于高结晶度和独特的光电导-气压计耦合效应,两种工作模式表现出从可见光到近红外波长(405-1920 nm)的广泛光谱响应。尤其值得一提的是所制造的 SnS 器件,它的响应率高达 95.5 A W-1,检测率为 7.8 × 1011 Jones,比其他器件高出 1-2 个数量级。此外,SnS PD 还具有出色的环境耐久性。这项工作为开发高性能宽带 SnS PD 提供了一种稳健的方法,同时也为深入了解光物质相互作用提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
2D Materials
2D Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
10.70
自引率
5.50%
发文量
138
审稿时长
1.5 months
期刊介绍: 2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.
期刊最新文献
Constructing three-dimensional GO/CNT@NMP aerogels towards primary lithium metal batteries Two-dimensional Janus MXTe (M = Hf, Zr; X = S, Se) piezoelectrocatalysts: a comprehensive investigation of its electronic, synthesis feasibility, electric polarization, and hydrogen evolution reaction activity The future of Xenes beyond graphene: challenges and perspective Soft-carbon-tuned hard carbon anode for ultrahigh-rate sodium storage Multiscale computational modeling techniques in study and design of 2D materials: recent advances, challenges, and opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1