Electronic structures and quantum capacitance of twisted mixed-dimensional van der Waals heterostructures of graphene/C2H based on tight-binding model

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY 2D Materials Pub Date : 2024-03-06 DOI:10.1088/2053-1583/ad2caa
Baojuan Xin, Boyan Li, Wen Yang, Luyan Li, Hong Dong, Yahui Cheng, Hui Liu, Wei-Hua Wang, Feng Lu
{"title":"Electronic structures and quantum capacitance of twisted mixed-dimensional van der Waals heterostructures of graphene/C2H based on tight-binding model","authors":"Baojuan Xin, Boyan Li, Wen Yang, Luyan Li, Hong Dong, Yahui Cheng, Hui Liu, Wei-Hua Wang, Feng Lu","doi":"10.1088/2053-1583/ad2caa","DOIUrl":null,"url":null,"abstract":"Constructing twisted mixed dimensional graphene-based van der Waals heterostructure (vdWH) is an effective strategy to manipulate the electronic structures and improve the quantum capacitance (<italic toggle=\"yes\">C</italic>\n<sub>q</sub>) of graphene. In this work, mixed dimensional vdWH of graphene/C<sub>2</sub>H has been proposed owing to similar Dirac semimetal character of one-dimensional C<sub>2</sub>H with that of graphene. Meanwhile, the influence of twisting angle (<italic toggle=\"yes\">θ</italic>) and interlayer interaction strength on the electronic structures and the <italic toggle=\"yes\">C</italic>\n<sub>q</sub> of the MD vdWH are systemically explored based on tight binding model. With the fitted hopping integral parameters, it is found that the linear dispersion of the graphene is basically preserved but the bandwidth is decreased with modulating twisting angle and interlayer interaction, and the <italic toggle=\"yes\">C</italic>\n<sub>q</sub> of mixed dimensional vdWH is improved 5–19 times compared with graphene at zero bias. Moreover, the compressed strain could enhance the <italic toggle=\"yes\">C</italic>\n<sub>q</sub> of mixed dimensional vdWH to 74.57 <italic toggle=\"yes\">μ</italic>F cm<sup>−2</sup> at zero bias and broaden the low working voltage window of mixed-dimensional vdWH with considerable <italic toggle=\"yes\">C</italic>\n<sub>q</sub>. Our results provide suitable tight-binding model parameters and theoretical guidance for exploring the twisted MD vdWH of graphene/C<sub>2</sub>H and offer an effective strategy to modulate the electronic structures and the <italic toggle=\"yes\">C</italic>\n<sub>q</sub> of graphene through constructing the MD vdWH.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"68 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad2caa","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing twisted mixed dimensional graphene-based van der Waals heterostructure (vdWH) is an effective strategy to manipulate the electronic structures and improve the quantum capacitance (C q) of graphene. In this work, mixed dimensional vdWH of graphene/C2H has been proposed owing to similar Dirac semimetal character of one-dimensional C2H with that of graphene. Meanwhile, the influence of twisting angle (θ) and interlayer interaction strength on the electronic structures and the C q of the MD vdWH are systemically explored based on tight binding model. With the fitted hopping integral parameters, it is found that the linear dispersion of the graphene is basically preserved but the bandwidth is decreased with modulating twisting angle and interlayer interaction, and the C q of mixed dimensional vdWH is improved 5–19 times compared with graphene at zero bias. Moreover, the compressed strain could enhance the C q of mixed dimensional vdWH to 74.57 μF cm−2 at zero bias and broaden the low working voltage window of mixed-dimensional vdWH with considerable C q. Our results provide suitable tight-binding model parameters and theoretical guidance for exploring the twisted MD vdWH of graphene/C2H and offer an effective strategy to modulate the electronic structures and the C q of graphene through constructing the MD vdWH.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于紧密结合模型的石墨烯/C2H 扭曲混维范德华异质结构的电子结构和量子电容
构建基于石墨烯的扭曲混合维范德华异质结构(vdWH)是操纵电子结构和提高石墨烯量子电容(Cq)的有效策略。由于一维 C2H 与石墨烯具有相似的狄拉克半金属特性,本研究提出了石墨烯/C2H 混合维范德华异质结构。同时,基于紧密结合模型,系统地探讨了扭转角(θ)和层间相互作用强度对 MD vdWH 电子结构和 Cq 的影响。通过拟合跳频积分参数,发现石墨烯的线性色散基本保持不变,但带宽随扭转角和层间相互作用的调节而减小,混合维 vdWH 的 Cq 在零偏压下比石墨烯提高了 5-19 倍。此外,在零偏压下,压缩应变可将混合维 vdWH 的 Cq 提高到 74.57 μF cm-2,并以可观的 Cq 拓宽了混合维 vdWH 的低工作电压窗口。我们的研究结果为探索石墨烯/C2H 的扭曲 MD vdWH 提供了合适的紧密结合模型参数和理论指导,并为通过构建 MD vdWH 来调控石墨烯的电子结构和 Cq 提供了有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
2D Materials
2D Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
10.70
自引率
5.50%
发文量
138
审稿时长
1.5 months
期刊介绍: 2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.
期刊最新文献
Constructing three-dimensional GO/CNT@NMP aerogels towards primary lithium metal batteries Two-dimensional Janus MXTe (M = Hf, Zr; X = S, Se) piezoelectrocatalysts: a comprehensive investigation of its electronic, synthesis feasibility, electric polarization, and hydrogen evolution reaction activity The future of Xenes beyond graphene: challenges and perspective Soft-carbon-tuned hard carbon anode for ultrahigh-rate sodium storage Multiscale computational modeling techniques in study and design of 2D materials: recent advances, challenges, and opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1