Quantification of plasma enabled surface cooling by electron emission from high temperature materials

Junhwi Bak, Albina Tropina, James Creel, Richard B Miles
{"title":"Quantification of plasma enabled surface cooling by electron emission from high temperature materials","authors":"Junhwi Bak, Albina Tropina, James Creel, Richard B Miles","doi":"10.1088/1361-6595/ad2b7c","DOIUrl":null,"url":null,"abstract":"In this work, the potential for hypersonic leading edge cooling by electron emission is demonstrated. To overcome space charge limitations the experiments are carried out in an argon discharge at 1 Torr. Cooling is observed with time-resolved measurements of the electron emission current and surface temperature, taking advantage of well controlled laser heating of the emitting surface and time accurate surface pyrometry. For the ignited mode of the plasma discharge, surface cooling by the electron emission is directly observed, leading to an estimated cooling rate of <inline-formula>\n<tex-math><?CDATA $1.6\\pm0.2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>1.6</mml:mn><mml:mo>±</mml:mo><mml:mn>0.2</mml:mn></mml:math>\n<inline-graphic xlink:href=\"psstad2b7cieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> MW m<sup>−2</sup>. Higher cooling rates with self sustained plasmas for space charge mitigation are expected using cesium transpiration. A two-dimensional model of heat transfer has been developed, which reproduces well the experimentally observed cooling dynamics. Parametric tests of emitter materials with various work functions show that for effective surface cooling by electron emission, the optimal work function must be less than 3.0 eV. This result indicates that electron cooling can be a promising thermal protection method for leading edges of hypersonic vehicles in flight.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad2b7c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the potential for hypersonic leading edge cooling by electron emission is demonstrated. To overcome space charge limitations the experiments are carried out in an argon discharge at 1 Torr. Cooling is observed with time-resolved measurements of the electron emission current and surface temperature, taking advantage of well controlled laser heating of the emitting surface and time accurate surface pyrometry. For the ignited mode of the plasma discharge, surface cooling by the electron emission is directly observed, leading to an estimated cooling rate of 1.6±0.2  MW m−2. Higher cooling rates with self sustained plasmas for space charge mitigation are expected using cesium transpiration. A two-dimensional model of heat transfer has been developed, which reproduces well the experimentally observed cooling dynamics. Parametric tests of emitter materials with various work functions show that for effective surface cooling by electron emission, the optimal work function must be less than 3.0 eV. This result indicates that electron cooling can be a promising thermal protection method for leading edges of hypersonic vehicles in flight.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体通过高温材料电子发射实现表面冷却的定量分析
在这项工作中,通过电子发射证明了高超音速前缘冷却的潜力。为了克服空间电荷的限制,实验在 1 托的氩气放电中进行。通过对电子发射电流和表面温度进行时间分辨测量,利用对发射表面进行良好控制的激光加热和时间精确的表面高温计,观察冷却情况。在等离子体放电的点燃模式下,可直接观察到电子发射的表面冷却,估计冷却率为 1.6±0.2 MW m-2。利用铯蒸腾作用,用于空间电荷减缓的自持等离子体的冷却率预计会更高。已经建立了一个二维传热模型,该模型很好地再现了实验观察到的冷却动态。对具有各种功函数的发射器材料进行的参数测试表明,要想通过电子发射实现有效的表面冷却,最佳功函数必须小于 3.0 eV。这一结果表明,对于飞行中的高超音速飞行器前缘,电子冷却是一种很有前途的热保护方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ThunderBoltz: an open-source direct simulation Monte Carlo Boltzmann solver for plasma transport, chemical kinetics, and 0D modeling Kinetic investigation of discharge performance for Xe, Kr, and Ar in a miniature ion thruster using a fast converging PIC-MCC-DSMC model Ground experimental study of the electron density of plasma sheath reduced by pulsed discharge Breakdown modes of capacitively coupled plasma: I. Transitions from glow discharge to multipactor Breakdown modes of capacitively coupled plasma: II. Non-self-sustained discharges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1