{"title":"Vibrational analysis of finite plate on elastic foundation subjected to oblique impact","authors":"Weipeng Hu, Yangxin Zhou, Qianli Liu, Fan Zhang, Qiang Zhou, Chuan Xiao","doi":"10.2140/jomms.2024.19.419","DOIUrl":null,"url":null,"abstract":"<p>As a typical nonsmooth strong coupling dynamic problem, the vibrational analysis on the plate subjected to the oblique impact requires us to develop the effective method that can be used to deal with the nonsmooth strong coupling problem well. Focusing on the local dynamic behaviors of the impact system, the generalized multisymplectic method is employed to reproduce the dynamic response of the finite plate on the elastic foundation subjected to an oblique impact in this paper. Firstly, the first-order approximate symmetric form of the dynamic equation describing the vibration of the finite plate on the elastic foundation subjected to an oblique impact is deduced based on the multisymplectic theory. Then, a generalized multisymplectic scheme equivalent to the Preissmann scheme for the first-order approximate symmetric form is constructed. The validity as well as the high precision of the generalized multisymplectic scheme are verified by the finite element method and the approximate theoretical solution in the numerical simulations finally. From the numerical results, the effects of the angle parameters for the oblique impact on the maximum transverse displacement of the plate are discussed in detail. The main contribution of this work is proposing a structure-preserving method to investigate the nonsmooth strong coupling dynamic problem effectively. </p>","PeriodicalId":50134,"journal":{"name":"Journal of Mechanics of Materials and Structures","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics of Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2140/jomms.2024.19.419","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As a typical nonsmooth strong coupling dynamic problem, the vibrational analysis on the plate subjected to the oblique impact requires us to develop the effective method that can be used to deal with the nonsmooth strong coupling problem well. Focusing on the local dynamic behaviors of the impact system, the generalized multisymplectic method is employed to reproduce the dynamic response of the finite plate on the elastic foundation subjected to an oblique impact in this paper. Firstly, the first-order approximate symmetric form of the dynamic equation describing the vibration of the finite plate on the elastic foundation subjected to an oblique impact is deduced based on the multisymplectic theory. Then, a generalized multisymplectic scheme equivalent to the Preissmann scheme for the first-order approximate symmetric form is constructed. The validity as well as the high precision of the generalized multisymplectic scheme are verified by the finite element method and the approximate theoretical solution in the numerical simulations finally. From the numerical results, the effects of the angle parameters for the oblique impact on the maximum transverse displacement of the plate are discussed in detail. The main contribution of this work is proposing a structure-preserving method to investigate the nonsmooth strong coupling dynamic problem effectively.
期刊介绍:
Drawing from all areas of engineering, materials, and biology, the mechanics of solids, materials, and structures is experiencing considerable growth in directions not anticipated a few years ago, which involve the development of new technology requiring multidisciplinary simulation. The journal stimulates this growth by emphasizing fundamental advances that are relevant in dealing with problems of all length scales. Of growing interest are the multiscale problems with an interaction between small and large scale phenomena.