{"title":"Spatial analysis of COVID-19 risk factors: a case study in Bangladesh","authors":"Sefat-E- Barket, Md. Rezaul Karim","doi":"10.1007/s10453-024-09815-z","DOIUrl":null,"url":null,"abstract":"<div><p>In 2019, the world grappled with an unexpected and severe global health crisis—the Coronavirus disease (COVID-19) outbreak, which significantly impacted various aspects of human life. This case study, focusing on Bangladesh, aimed to uncover the complex spatial patterns and potential risk factors influencing the virus’s uneven spread across 64 districts. To analyze spatial patterns, two techniques, namely Moran <i>I</i> and Geary <i>C</i>, were employed to study spatial autocorrelation. Hotspots and coldspots were identified using local Moran <i>I</i>, while spatial hotspots were pinpointed using local Getis Ord <i>G</i>. Exploring spatial heterogeneity involved implementing two non-spatial models (Poisson–Gamma and Poisson-Lognormal) and three spatial models (Conditional Autoregressive model, Convolution model, and Leroux model) through Gibbs sampling. The Leroux model emerged as the optimal choice, meeting criteria based on the lowest values of deviance information criterion and Watanabe–Akaike information criterion. Regression analysis revealed that factors such as humidity, population density, and urbanization were associated with an increase in COVID-19 cases, while the aging index appeared to hinder the virus’s spread. The research outcomes provide a comprehensive framework adaptable to the evolving nature of COVID-19 in Bangladesh. It categorizes influential factors into distinct clusters, enabling government agencies, policymakers, and healthcare professionals to make informed decisions for controlling the pandemic and addressing future infectious diseases.</p></div>","PeriodicalId":7718,"journal":{"name":"Aerobiologia","volume":"40 2","pages":"247 - 269"},"PeriodicalIF":2.2000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerobiologia","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10453-024-09815-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In 2019, the world grappled with an unexpected and severe global health crisis—the Coronavirus disease (COVID-19) outbreak, which significantly impacted various aspects of human life. This case study, focusing on Bangladesh, aimed to uncover the complex spatial patterns and potential risk factors influencing the virus’s uneven spread across 64 districts. To analyze spatial patterns, two techniques, namely Moran I and Geary C, were employed to study spatial autocorrelation. Hotspots and coldspots were identified using local Moran I, while spatial hotspots were pinpointed using local Getis Ord G. Exploring spatial heterogeneity involved implementing two non-spatial models (Poisson–Gamma and Poisson-Lognormal) and three spatial models (Conditional Autoregressive model, Convolution model, and Leroux model) through Gibbs sampling. The Leroux model emerged as the optimal choice, meeting criteria based on the lowest values of deviance information criterion and Watanabe–Akaike information criterion. Regression analysis revealed that factors such as humidity, population density, and urbanization were associated with an increase in COVID-19 cases, while the aging index appeared to hinder the virus’s spread. The research outcomes provide a comprehensive framework adaptable to the evolving nature of COVID-19 in Bangladesh. It categorizes influential factors into distinct clusters, enabling government agencies, policymakers, and healthcare professionals to make informed decisions for controlling the pandemic and addressing future infectious diseases.
期刊介绍:
Associated with the International Association for Aerobiology, Aerobiologia is an international medium for original research and review articles in the interdisciplinary fields of aerobiology and interaction of human, plant and animal systems on the biosphere. Coverage includes bioaerosols, transport mechanisms, biometeorology, climatology, air-sea interaction, land-surface/atmosphere interaction, biological pollution, biological input to global change, microbiology, aeromycology, aeropalynology, arthropod dispersal and environmental policy. Emphasis is placed on respiratory allergology, plant pathology, pest management, biological weathering and biodeterioration, indoor air quality, air-conditioning technology, industrial aerobiology and more.
Aerobiologia serves aerobiologists, and other professionals in medicine, public health, industrial and environmental hygiene, biological sciences, agriculture, atmospheric physics, botany, environmental science and cultural heritage.