Convergence of non-linear diagonal frame filtering for regularizing inverse problems

IF 2 2区 数学 Q1 MATHEMATICS, APPLIED Inverse Problems Pub Date : 2024-03-26 DOI:10.1088/1361-6420/ad3333
Andrea Ebner, Markus Haltmeier
{"title":"Convergence of non-linear diagonal frame filtering for regularizing inverse problems","authors":"Andrea Ebner, Markus Haltmeier","doi":"10.1088/1361-6420/ad3333","DOIUrl":null,"url":null,"abstract":"Inverse problems are key issues in several scientific areas, including signal processing and medical imaging. Since inverse problems typically suffer from instability with respect to data perturbations, a variety of regularization techniques have been proposed. In particular, the use of filtered diagonal frame decompositions (DFDs) has proven to be effective and computationally efficient. However, existing convergence analysis applies only to linear filters and a few non-linear filters such as soft thresholding. In this paper, we analyze filtered DFDs with general non-linear filters. In particular, our results generalize singular value decomposition-based spectral filtering from linear to non-linear filters as a special case. As a first approach, we establish a connection between non-linear diagonal frame filtering and variational regularization, allowing us to use results from variational regularization to derive the convergence of non-linear spectral filtering. In the second approach, as our main theoretical results, we relax the assumptions involved in the variational case while still deriving convergence. Furthermore, we discuss connections between non-linear filtering and plug-and-play regularization and explore potential benefits of this relationship.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"14 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad3333","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Inverse problems are key issues in several scientific areas, including signal processing and medical imaging. Since inverse problems typically suffer from instability with respect to data perturbations, a variety of regularization techniques have been proposed. In particular, the use of filtered diagonal frame decompositions (DFDs) has proven to be effective and computationally efficient. However, existing convergence analysis applies only to linear filters and a few non-linear filters such as soft thresholding. In this paper, we analyze filtered DFDs with general non-linear filters. In particular, our results generalize singular value decomposition-based spectral filtering from linear to non-linear filters as a special case. As a first approach, we establish a connection between non-linear diagonal frame filtering and variational regularization, allowing us to use results from variational regularization to derive the convergence of non-linear spectral filtering. In the second approach, as our main theoretical results, we relax the assumptions involved in the variational case while still deriving convergence. Furthermore, we discuss connections between non-linear filtering and plug-and-play regularization and explore potential benefits of this relationship.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于正则化逆问题的非线性对角框滤波的收敛性
逆问题是信号处理和医学成像等多个科学领域的关键问题。由于逆问题通常在数据扰动方面存在不稳定性,因此人们提出了各种正则化技术。其中,使用滤波对角框分解(DFD)已被证明是有效且计算效率高的方法。然而,现有的收敛性分析仅适用于线性滤波器和少数非线性滤波器,如软阈值。在本文中,我们分析了一般非线性滤波器的滤波 DFD。特别是,我们的结果将基于奇异值分解的频谱滤波从线性滤波器推广到了非线性滤波器。作为第一种方法,我们在非线性对角框滤波和变分正则化之间建立了联系,从而可以利用变分正则化的结果来推导非线性谱滤波的收敛性。在第二种方法中,作为我们的主要理论结果,我们放宽了变分情况下所涉及的假设,同时仍然推导出收敛性。此外,我们还讨论了非线性过滤与即插即用正则化之间的联系,并探讨了这种关系的潜在益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inverse Problems
Inverse Problems 数学-物理:数学物理
CiteScore
4.40
自引率
14.30%
发文量
115
审稿时长
2.3 months
期刊介绍: An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution. As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others. The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.
期刊最新文献
Optimizing quantitative photoacoustic imaging systems: the Bayesian Cramér-Rao bound approach. A microlocal and visual comparison of 2D Kirchhoff migration formulas in seismic imaging * A bilevel optimization method for inverse mean-field games * Lipschitz stability of an inverse conductivity problem with two Cauchy data pairs Exact recovery of the support of piecewise constant images via total variation regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1