{"title":"Convergence of non-linear diagonal frame filtering for regularizing inverse problems","authors":"Andrea Ebner, Markus Haltmeier","doi":"10.1088/1361-6420/ad3333","DOIUrl":null,"url":null,"abstract":"Inverse problems are key issues in several scientific areas, including signal processing and medical imaging. Since inverse problems typically suffer from instability with respect to data perturbations, a variety of regularization techniques have been proposed. In particular, the use of filtered diagonal frame decompositions (DFDs) has proven to be effective and computationally efficient. However, existing convergence analysis applies only to linear filters and a few non-linear filters such as soft thresholding. In this paper, we analyze filtered DFDs with general non-linear filters. In particular, our results generalize singular value decomposition-based spectral filtering from linear to non-linear filters as a special case. As a first approach, we establish a connection between non-linear diagonal frame filtering and variational regularization, allowing us to use results from variational regularization to derive the convergence of non-linear spectral filtering. In the second approach, as our main theoretical results, we relax the assumptions involved in the variational case while still deriving convergence. Furthermore, we discuss connections between non-linear filtering and plug-and-play regularization and explore potential benefits of this relationship.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"14 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad3333","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Inverse problems are key issues in several scientific areas, including signal processing and medical imaging. Since inverse problems typically suffer from instability with respect to data perturbations, a variety of regularization techniques have been proposed. In particular, the use of filtered diagonal frame decompositions (DFDs) has proven to be effective and computationally efficient. However, existing convergence analysis applies only to linear filters and a few non-linear filters such as soft thresholding. In this paper, we analyze filtered DFDs with general non-linear filters. In particular, our results generalize singular value decomposition-based spectral filtering from linear to non-linear filters as a special case. As a first approach, we establish a connection between non-linear diagonal frame filtering and variational regularization, allowing us to use results from variational regularization to derive the convergence of non-linear spectral filtering. In the second approach, as our main theoretical results, we relax the assumptions involved in the variational case while still deriving convergence. Furthermore, we discuss connections between non-linear filtering and plug-and-play regularization and explore potential benefits of this relationship.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.