Ae Sol Lee, Hye Ryoung Heo, Chang Sup Kim, Hyung Joon Cha
{"title":"Improved enzyme-linked immunosorbent assay using surface-adhesive antibody-oriented immobilizing biolinker: a proof-of-concept study","authors":"Ae Sol Lee, Hye Ryoung Heo, Chang Sup Kim, Hyung Joon Cha","doi":"10.1007/s12257-024-00093-7","DOIUrl":null,"url":null,"abstract":"<p>Enzyme-linked immunosorbent assays (ELISA) have been widely used to detect disease-related antigens in clinical and research laboratories. One of the main drawbacks of ELISA is the utilization of physical adsorption for immobilizing antibodies on a surface, causing low sensitivity, reproducibility, and precision. In this study, we applied a BC-MAP linker composed of antibody-immobilizing BC domains of protein A and surface-adhesive mussel adhesive protein (MAP) to an ELISA platform to overcome these limitations. The performance of ELISA using BC-MAP linker was compared with that of untreated ELISA. BC-MAP proteins were reproducibly coated to the surface while exposing BC domains, resulting in twofold higher sensitivity and improved reproducibility of ELISA compared to the untreated ELISA utilizing physical adsorption of antibodies. Thus, the proposed method could be successfully used in ELISA platforms to diagnose and manage diseases.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioprocess Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12257-024-00093-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enzyme-linked immunosorbent assays (ELISA) have been widely used to detect disease-related antigens in clinical and research laboratories. One of the main drawbacks of ELISA is the utilization of physical adsorption for immobilizing antibodies on a surface, causing low sensitivity, reproducibility, and precision. In this study, we applied a BC-MAP linker composed of antibody-immobilizing BC domains of protein A and surface-adhesive mussel adhesive protein (MAP) to an ELISA platform to overcome these limitations. The performance of ELISA using BC-MAP linker was compared with that of untreated ELISA. BC-MAP proteins were reproducibly coated to the surface while exposing BC domains, resulting in twofold higher sensitivity and improved reproducibility of ELISA compared to the untreated ELISA utilizing physical adsorption of antibodies. Thus, the proposed method could be successfully used in ELISA platforms to diagnose and manage diseases.
期刊介绍:
Biotechnology and Bioprocess Engineering is an international bimonthly journal published by the Korean Society for Biotechnology and Bioengineering. BBE is devoted to the advancement in science and technology in the wide area of biotechnology, bioengineering, and (bio)medical engineering. This includes but is not limited to applied molecular and cell biology, engineered biocatalysis and biotransformation, metabolic engineering and systems biology, bioseparation and bioprocess engineering, cell culture technology, environmental and food biotechnology, pharmaceutics and biopharmaceutics, biomaterials engineering, nanobiotechnology, and biosensor and bioelectronics.