{"title":"Augmented Lagrangian Acceleration of Global-in-Time Pressure Schur Complement Solvers for Incompressible Oseen Equations","authors":"Christoph Lohmann, Stefan Turek","doi":"10.1007/s00021-024-00862-7","DOIUrl":null,"url":null,"abstract":"<div><p>This work is focused on an accelerated global-in-time solution strategy for the Oseen equations, which highly exploits the augmented Lagrangian methodology to improve the convergence behavior of the Schur complement iteration. The main idea of the solution strategy is to block the individual linear systems of equations at each time step into a single all-at-once saddle point problem. By elimination of all velocity unknowns, the resulting implicitly defined equation can then be solved using a global-in-time pressure Schur complement (PSC) iteration. To accelerate the convergence behavior of this iterative scheme, the augmented Lagrangian approach is exploited by modifying the momentum equation for all time steps in a strongly consistent manner. While the introduced discrete grad-div stabilization does not modify the solution of the discretized Oseen equations, the quality of customized PSC preconditioners drastically improves and, hence, guarantees a rapid convergence. This strategy comes at the cost that the involved auxiliary problem for the velocity field becomes ill conditioned so that standard iterative solution strategies are no longer efficient. Therefore, a highly specialized multigrid solver based on modified intergrid transfer operators and an additive block preconditioner is extended to solution of the all-at-once problem. The potential of the proposed overall solution strategy is discussed in several numerical studies as they occur in commonly used linearization techniques for the incompressible Navier–Stokes equations.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-024-00862-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00862-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This work is focused on an accelerated global-in-time solution strategy for the Oseen equations, which highly exploits the augmented Lagrangian methodology to improve the convergence behavior of the Schur complement iteration. The main idea of the solution strategy is to block the individual linear systems of equations at each time step into a single all-at-once saddle point problem. By elimination of all velocity unknowns, the resulting implicitly defined equation can then be solved using a global-in-time pressure Schur complement (PSC) iteration. To accelerate the convergence behavior of this iterative scheme, the augmented Lagrangian approach is exploited by modifying the momentum equation for all time steps in a strongly consistent manner. While the introduced discrete grad-div stabilization does not modify the solution of the discretized Oseen equations, the quality of customized PSC preconditioners drastically improves and, hence, guarantees a rapid convergence. This strategy comes at the cost that the involved auxiliary problem for the velocity field becomes ill conditioned so that standard iterative solution strategies are no longer efficient. Therefore, a highly specialized multigrid solver based on modified intergrid transfer operators and an additive block preconditioner is extended to solution of the all-at-once problem. The potential of the proposed overall solution strategy is discussed in several numerical studies as they occur in commonly used linearization techniques for the incompressible Navier–Stokes equations.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.