Nonlinearly Optimized Dual Stereo Visual Odometry Fusion

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent & Robotic Systems Pub Date : 2024-03-28 DOI:10.1007/s10846-024-02069-4
Elizabeth Viviana Cabrera-Ávila, Bruno Marques Ferreira da Silva, Luiz Marcos Garcia Gonçalves
{"title":"Nonlinearly Optimized Dual Stereo Visual Odometry Fusion","authors":"Elizabeth Viviana Cabrera-Ávila, Bruno Marques Ferreira da Silva, Luiz Marcos Garcia Gonçalves","doi":"10.1007/s10846-024-02069-4","DOIUrl":null,"url":null,"abstract":"<p>Visual odometry (VO) is an important problem studied in robotics and computer vision in which the relative camera motion is computed through visual information. In this work, we propose to reduce the error accumulation of a dual stereo VO system (4 cameras) computing 6 degrees of freedom poses by fusing two independent stereo odometry with a nonlinear optimization. Our approach computes two stereo odometries employing the LIBVISO2 algorithm and later merge them by using image correspondences between the stereo pairs and minimizing the reprojection error with graph-based bundle adjustment. Experiments carried out on the KITTI odometry datasets show that our method computes more accurate estimates (measured as the Relative Positioning Error) in comparison to the traditional stereo odometry (stereo bundle adjustment). In addition, the proposed method has a similar or better odometry accuracy compared to ORB-SLAM2 and UCOSLAM algorithms.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"172 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02069-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Visual odometry (VO) is an important problem studied in robotics and computer vision in which the relative camera motion is computed through visual information. In this work, we propose to reduce the error accumulation of a dual stereo VO system (4 cameras) computing 6 degrees of freedom poses by fusing two independent stereo odometry with a nonlinear optimization. Our approach computes two stereo odometries employing the LIBVISO2 algorithm and later merge them by using image correspondences between the stereo pairs and minimizing the reprojection error with graph-based bundle adjustment. Experiments carried out on the KITTI odometry datasets show that our method computes more accurate estimates (measured as the Relative Positioning Error) in comparison to the traditional stereo odometry (stereo bundle adjustment). In addition, the proposed method has a similar or better odometry accuracy compared to ORB-SLAM2 and UCOSLAM algorithms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性优化的双立体视觉测距融合
视觉里程测量(VO)是机器人学和计算机视觉领域研究的一个重要问题,通过视觉信息计算摄像机的相对运动。在这项工作中,我们建议通过非线性优化融合两个独立的立体里程计,减少双立体 VO 系统(4 个摄像头)计算 6 自由度姿势时的误差累积。我们的方法采用 LIBVISO2 算法计算两个立体姿态,然后利用立体对之间的图像对应关系将其合并,并通过基于图的捆绑调整使重投误差最小化。在 KITTI 测距数据集上进行的实验表明,与传统的立体测距(立体束调整)相比,我们的方法能计算出更精确的估计值(以相对定位误差衡量)。此外,与 ORB-SLAM2 和 UCOSLAM 算法相比,所提出的方法具有相似或更高的里程测量精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligent & Robotic Systems
Journal of Intelligent & Robotic Systems 工程技术-机器人学
CiteScore
7.00
自引率
9.10%
发文量
219
审稿时长
6 months
期刊介绍: The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization. On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc. On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).
期刊最新文献
UAV Routing for Enhancing the Performance of a Classifier-in-the-loop DFT-VSLAM: A Dynamic Optical Flow Tracking VSLAM Method Design and Development of a Robust Control Platform for a 3-Finger Robotic Gripper Using EMG-Derived Hand Muscle Signals in NI LabVIEW Neural Network-based Adaptive Finite-time Control for 2-DOF Helicopter Systems with Prescribed Performance and Input Saturation Six-Degree-of-Freedom Pose Estimation Method for Multi-Source Feature Points Based on Fully Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1