Genome‐wide mapping in an international isolate collection identifies a transcontinental erg11/CYP51 promoter insertion associated with fungicide resistance in Leptosphaeria maculans
Jack L. Scanlan, Alexander Idnurm, Angela P. Van de Wouw
{"title":"Genome‐wide mapping in an international isolate collection identifies a transcontinental erg11/CYP51 promoter insertion associated with fungicide resistance in Leptosphaeria maculans","authors":"Jack L. Scanlan, Alexander Idnurm, Angela P. Van de Wouw","doi":"10.1111/ppa.13898","DOIUrl":null,"url":null,"abstract":"Fungicide resistance is often conferred through the mutation of genes encoding fungicide targets or proteins that remove fungicides from cells, but mechanisms can vary widely between taxa. Discovering the specific resistance alleles present in pathogen populations is essential for monitoring the evolution and movement of resistant genotypes. In this study, we explored the genomic basis of demethylase inhibitor (DMI) resistance in <jats:italic>Leptosphaeria maculans</jats:italic>, the main pathogen of the canola crop <jats:italic>Brassica napus</jats:italic>. Using an international collection of over 200 genome‐sequenced isolates, we assayed in vitro sensitivity to the DMI tebuconazole and conducted a genome‐wide association study on a variant set including single‐nucleotide polymorphisms (SNPs), small indels and structural variants. The main resistance allele identified was a 237 bp remnant transposable element insertion in the promoter of the <jats:italic>erg11</jats:italic>/<jats:italic>CYP51</jats:italic> DMI target gene in a large proportion of isolates from Europe, an allele known to confer DMI resistance in Australia. Several associated loci were identified, none of which are commonly linked to DMI resistance in other phytopathogens. We also found little to no relationship between DMI tolerance and baseline growth rate, suggesting minimal fitness effects of fungicide resistance in these isolates. This study indicates common DMI resistance alleles in <jats:italic>L</jats:italic>. <jats:italic>maculans</jats:italic> are shared across continents and <jats:italic>erg11</jats:italic>/<jats:italic>CYP51</jats:italic> coding mutations, which are near‐ubiquitous in other fungal pathogens, may not underpin DMI resistance in this species. Furthermore, that resistance occurs frequently in numerous canola‐growing regions suggests management is essential for growers.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"14 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/ppa.13898","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Fungicide resistance is often conferred through the mutation of genes encoding fungicide targets or proteins that remove fungicides from cells, but mechanisms can vary widely between taxa. Discovering the specific resistance alleles present in pathogen populations is essential for monitoring the evolution and movement of resistant genotypes. In this study, we explored the genomic basis of demethylase inhibitor (DMI) resistance in Leptosphaeria maculans, the main pathogen of the canola crop Brassica napus. Using an international collection of over 200 genome‐sequenced isolates, we assayed in vitro sensitivity to the DMI tebuconazole and conducted a genome‐wide association study on a variant set including single‐nucleotide polymorphisms (SNPs), small indels and structural variants. The main resistance allele identified was a 237 bp remnant transposable element insertion in the promoter of the erg11/CYP51 DMI target gene in a large proportion of isolates from Europe, an allele known to confer DMI resistance in Australia. Several associated loci were identified, none of which are commonly linked to DMI resistance in other phytopathogens. We also found little to no relationship between DMI tolerance and baseline growth rate, suggesting minimal fitness effects of fungicide resistance in these isolates. This study indicates common DMI resistance alleles in L. maculans are shared across continents and erg11/CYP51 coding mutations, which are near‐ubiquitous in other fungal pathogens, may not underpin DMI resistance in this species. Furthermore, that resistance occurs frequently in numerous canola‐growing regions suggests management is essential for growers.
期刊介绍:
This international journal, owned and edited by the British Society for Plant Pathology, covers all aspects of plant pathology and reaches subscribers in 80 countries. Top quality original research papers and critical reviews from around the world cover: diseases of temperate and tropical plants caused by fungi, bacteria, viruses, phytoplasmas and nematodes; physiological, biochemical, molecular, ecological, genetic and economic aspects of plant pathology; disease epidemiology and modelling; disease appraisal and crop loss assessment; and plant disease control and disease-related crop management.