Genome-wide association studies and transcriptomics reveal mechanisms explaining the diversity of wheat root responses to nutrient availability.

IF 5.6 2区 生物学 Q1 PLANT SCIENCES Journal of Experimental Botany Pub Date : 2025-03-13 DOI:10.1093/jxb/erae141
Suhaib Ahmad, Hafiza Madeeha Khan, Amjad Nawaz, Muhammad Abdul Samad, Huikyong Cho, Hira Sarfraz, Yasir Aziz, Hatem Rouached, Zaigham Shahzad
{"title":"Genome-wide association studies and transcriptomics reveal mechanisms explaining the diversity of wheat root responses to nutrient availability.","authors":"Suhaib Ahmad, Hafiza Madeeha Khan, Amjad Nawaz, Muhammad Abdul Samad, Huikyong Cho, Hira Sarfraz, Yasir Aziz, Hatem Rouached, Zaigham Shahzad","doi":"10.1093/jxb/erae141","DOIUrl":null,"url":null,"abstract":"<p><p>Nutrient availability profoundly influences plant root system architecture, which critically determines crop productivity. While Arabidopsis has provided important insights into the genetic responses to nutrient deficiency, translating this knowledge to crops, particularly wheat, remains a subject of inquiry. Here, examining a diverse wheat population under varying nitrogen (N), phosphorus (P), potassium (K), and iron (Fe) levels, we uncover a spectrum of root responses, spanning from growth inhibition to stimulation, highlighting genotype-specific strategies. Furthermore, we reveal a nuanced interplay between macronutrient deficiency (N, P, and K) and Fe availability, emphasizing the central role of Fe in modulating root architecture. Through genome-wide association mapping, we identify 11 quantitative trait loci underlying root traits under varying nutrient availabilities, including homologous genes previously validated in Arabidopsis, supporting our findings. In addition, utilizing transcriptomics, reactive oxygen species (ROS) imaging, and antioxidant treatment, we uncover that wheat root growth inhibition by nutrient deficiency is attributed to ROS accumulation, akin to the role of ROS in governing Arabidopsis root responses to nutrient deficiency. Therefore, our study reveals the conservation of molecular and physiological mechanisms between Arabidopsis and wheat to adjust root growth to nutrient availability, paving the way for targeted crop improvement strategies aimed at increasing nutrient use efficiency.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"1458-1472"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae141","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nutrient availability profoundly influences plant root system architecture, which critically determines crop productivity. While Arabidopsis has provided important insights into the genetic responses to nutrient deficiency, translating this knowledge to crops, particularly wheat, remains a subject of inquiry. Here, examining a diverse wheat population under varying nitrogen (N), phosphorus (P), potassium (K), and iron (Fe) levels, we uncover a spectrum of root responses, spanning from growth inhibition to stimulation, highlighting genotype-specific strategies. Furthermore, we reveal a nuanced interplay between macronutrient deficiency (N, P, and K) and Fe availability, emphasizing the central role of Fe in modulating root architecture. Through genome-wide association mapping, we identify 11 quantitative trait loci underlying root traits under varying nutrient availabilities, including homologous genes previously validated in Arabidopsis, supporting our findings. In addition, utilizing transcriptomics, reactive oxygen species (ROS) imaging, and antioxidant treatment, we uncover that wheat root growth inhibition by nutrient deficiency is attributed to ROS accumulation, akin to the role of ROS in governing Arabidopsis root responses to nutrient deficiency. Therefore, our study reveals the conservation of molecular and physiological mechanisms between Arabidopsis and wheat to adjust root growth to nutrient availability, paving the way for targeted crop improvement strategies aimed at increasing nutrient use efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全基因组关联研究和转录组学揭示了解释小麦根系对养分供应反应多样性的机制。
养分的可用性深刻影响着植物根系的结构,而根系结构又是决定作物产量的关键。虽然拟南芥对养分缺乏的遗传反应提供了重要的见解,但将这些知识转化到农作物,特别是小麦上,仍然是一个研究课题。在这里,我们研究了不同氮(N)、磷(P)、钾(K)和铁(Fe)水平下的不同小麦群体,发现了从生长抑制到刺激的一系列根系反应,突出了基因型特异性策略。此外,我们还揭示了宏量营养元素(氮、磷和钾)缺乏与铁供应之间微妙的相互作用,强调了铁在调节根系结构中的核心作用。通过全基因组关联图谱,我们确定了不同养分利用率下根系性状的 11 个数量性状位点,包括之前在拟南芥中验证的同源基因,支持了我们的研究结果。此外,利用转录组学、ROS成像和抗氧化剂处理,我们发现小麦根系生长受养分缺乏抑制的原因是ROS积累,这与ROS在拟南芥根系对养分缺乏的反应中的作用类似。因此,我们的研究揭示了拟南芥和小麦根据养分可用性调整根系生长的分子和生理机制的一致性,为旨在提高养分利用效率的有针对性的作物改良策略铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
期刊最新文献
PgMYB96 enhances Physalis grisea high temperature tolerance by activating trithorax-like factor WD REPEAT CONTAINING5b. Genome-wide association studies and transcriptomics reveal mechanisms explaining the diversity of wheat root responses to nutrient availability. Metalloid transporters in plants: bridging the gap in molecular structure and physiological exaptation. Heat stress in plants: sensing, signalling, and ferroptosis. Grain lysine enrichment and improved stress tolerance in rice through protein engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1