Facial age recognition based on deep manifold learning.

IF 2.6 4区 工程技术 Q1 Mathematics Mathematical Biosciences and Engineering Pub Date : 2024-02-28 DOI:10.3934/mbe.2024198
Huiying Zhang, Jiayan Lin, Lan Zhou, Jiahui Shen, Wenshun Sheng
{"title":"Facial age recognition based on deep manifold learning.","authors":"Huiying Zhang, Jiayan Lin, Lan Zhou, Jiahui Shen, Wenshun Sheng","doi":"10.3934/mbe.2024198","DOIUrl":null,"url":null,"abstract":"<p><p>Facial age recognition has been widely used in real-world applications. Most of current facial age recognition methods use deep learning to extract facial features to identify age. However, due to the high dimension features of faces, deep learning methods might extract a lot of redundant features, which is not beneficial for facial age recognition. To improve facial age recognition effectively, this paper proposed the deep manifold learning (DML), a combination of deep learning and manifold learning. In DML, deep learning was used to extract high-dimensional facial features, and manifold learning selected age-related features from these high-dimensional facial features for facial age recognition. Finally, we validated the DML on Multivariate Observations of Reactions and Physical Health (MORPH) and Face and Gesture Recognition Network (FG-NET) datasets. The results indicated that the mean absolute error (MAE) of MORPH is 1.60 and that of FG-NET is 2.48. Moreover, compared with the state of the art facial age recognition methods, the accuracy of DML has been greatly improved.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024198","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Facial age recognition has been widely used in real-world applications. Most of current facial age recognition methods use deep learning to extract facial features to identify age. However, due to the high dimension features of faces, deep learning methods might extract a lot of redundant features, which is not beneficial for facial age recognition. To improve facial age recognition effectively, this paper proposed the deep manifold learning (DML), a combination of deep learning and manifold learning. In DML, deep learning was used to extract high-dimensional facial features, and manifold learning selected age-related features from these high-dimensional facial features for facial age recognition. Finally, we validated the DML on Multivariate Observations of Reactions and Physical Health (MORPH) and Face and Gesture Recognition Network (FG-NET) datasets. The results indicated that the mean absolute error (MAE) of MORPH is 1.60 and that of FG-NET is 2.48. Moreover, compared with the state of the art facial age recognition methods, the accuracy of DML has been greatly improved.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度流形学习的面部年龄识别。
面部年龄识别已广泛应用于现实世界。目前,大多数人脸年龄识别方法都是利用深度学习提取人脸特征来识别年龄。然而,由于人脸具有高维度特征,深度学习方法可能会提取大量冗余特征,不利于人脸年龄识别。为了有效提高人脸年龄识别率,本文提出了深度学习与流形学习相结合的深度流形学习(DML)。在 DML 中,深度学习用于提取高维人脸特征,而流形学习则从这些高维人脸特征中选取与年龄相关的特征,用于人脸年龄识别。最后,我们在反应与身体健康多变量观察(MORPH)和人脸与手势识别网络(FG-NET)数据集上对 DML 进行了验证。结果表明,MORPH 的平均绝对误差(MAE)为 1.60,FG-NET 为 2.48。此外,与目前最先进的面部年龄识别方法相比,DML 的准确率有了很大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
期刊最新文献
CTFusion: CNN-transformer-based self-supervised learning for infrared and visible image fusion. Video-based person re-identification with complementary local and global features using a graph transformer. Modeling free tumor growth: Discrete, continuum, and hybrid approaches to interpreting cancer development. Retraction notice to "A video images-aware knowledge extraction method for intelligent healthcare management of basketball players" [Mathematical Biosciences and Engineering 20(2) (2023) 1919-1937]. Improved optimizer with deep learning model for emotion detection and classification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1