首页 > 最新文献

Mathematical Biosciences and Engineering最新文献

英文 中文
A within-host model on the interactions of sensitive and resistant Helicobacter pylori to antibiotic therapy considering immune response.
IF 2.6 4区 工程技术 Q1 Mathematics Pub Date : 2025-01-20 DOI: 10.3934/mbe.2025009
Edgar Alberto Vega Noguera, Simeón Casanova Trujillo, Eduardo Ibargüen-Mondragón

In this work, we formulated a mathematical model to describe growth, acquisition of bacterial resistance, and immune response for Helicobacter pylori (H. pylori). The qualitative analysis revealed the existence of five equilibrium solutions: (ⅰ) An infection-free state, in which the bacterial population and immune cells are suppressed, (ⅱ) an endemic state only with resistant bacteria without immune cells, (ⅲ) an endemic state only with resistant bacteria and immune cells, (ⅳ) an endemic state of bacterial coexistence without immune cells, and (ⅴ) an endemic coexistence state with immune response. The stability analysis showed that the equilibrium solutions (ⅰ) and (ⅳ) are locally asymptotically stable, whereas the equilibria (ⅱ) and (ⅲ) are unstable. We found four threshold conditions that establish the existence and stability of equilibria, which determine when the populations of sensitive H. pylori and resistant H. pylori are controlled or eliminated, or when the infection progresses only with resistant bacteria or with both bacterial populations. The numerical simulations corroborated the qualitative analysis, and provided information on the emergence of a limit cycle that breaks the stability of the coexistence equilibrium. The results revealed that the key to controlling bacterial progression is to keep bacterial growth thresholds below 1; this can be achieved by applying an appropriate combination of antibiotics and correct stimulation of the immune response. Otherwise, when bacterial growth thresholds exceed 1, the bacterial persistence scenarios mentioned above occur.

在这项研究中,我们建立了一个数学模型来描述幽门螺杆菌(H. pylori)的生长、细菌抗药性的获得和免疫反应。定性分析显示存在五种平衡解:(ⅰ)细菌种群和免疫细胞均受到抑制的无感染状态;(ⅱ)仅有抗性细菌而无免疫细胞的流行状态;(ⅲ)仅有抗性细菌和免疫细胞的流行状态;(ⅳ)无免疫细胞的细菌共存流行状态;(ⅴ)有免疫反应的细菌共存流行状态。稳定性分析表明,平衡解(ⅰ)和(ⅳ)是局部渐近稳定的,而平衡解(ⅱ)和(ⅲ)是不稳定的。我们发现了四个阈值条件,这些条件确定了平衡态的存在和稳定性,它们决定了敏感幽门螺杆菌种群和抗性幽门螺杆菌种群何时被控制或消除,或感染何时只在抗性细菌或两种细菌种群中进行。数值模拟证实了定性分析,并提供了有关打破共存平衡稳定性的极限循环出现的信息。结果表明,控制细菌繁殖的关键是将细菌生长阈值保持在 1 以下;这可以通过适当组合使用抗生素和正确刺激免疫反应来实现。否则,当细菌生长阈值超过 1 时,就会出现上述细菌持续存在的情况。
{"title":"A within-host model on the interactions of sensitive and resistant <i>Helicobacter pylori</i> to antibiotic therapy considering immune response.","authors":"Edgar Alberto Vega Noguera, Simeón Casanova Trujillo, Eduardo Ibargüen-Mondragón","doi":"10.3934/mbe.2025009","DOIUrl":"https://doi.org/10.3934/mbe.2025009","url":null,"abstract":"<p><p>In this work, we formulated a mathematical model to describe growth, acquisition of bacterial resistance, and immune response for Helicobacter pylori (<i>H. pylori</i>). The qualitative analysis revealed the existence of five equilibrium solutions: (ⅰ) An infection-free state, in which the bacterial population and immune cells are suppressed, (ⅱ) an endemic state only with resistant bacteria without immune cells, (ⅲ) an endemic state only with resistant bacteria and immune cells, (ⅳ) an endemic state of bacterial coexistence without immune cells, and (ⅴ) an endemic coexistence state with immune response. The stability analysis showed that the equilibrium solutions (ⅰ) and (ⅳ) are locally asymptotically stable, whereas the equilibria (ⅱ) and (ⅲ) are unstable. We found four threshold conditions that establish the existence and stability of equilibria, which determine when the populations of sensitive <i>H. pylori</i> and resistant <i>H. pylori</i> are controlled or eliminated, or when the infection progresses only with resistant bacteria or with both bacterial populations. The numerical simulations corroborated the qualitative analysis, and provided information on the emergence of a limit cycle that breaks the stability of the coexistence equilibrium. The results revealed that the key to controlling bacterial progression is to keep bacterial growth thresholds below 1; this can be achieved by applying an appropriate combination of antibiotics and correct stimulation of the immune response. Otherwise, when bacterial growth thresholds exceed 1, the bacterial persistence scenarios mentioned above occur.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 1","pages":"185-224"},"PeriodicalIF":2.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fully automated U-net based ROIs localization and bone age assessment method.
IF 2.6 4区 工程技术 Q1 Mathematics Pub Date : 2025-01-03 DOI: 10.3934/mbe.2025007
Yuzhong Zhao, Yihao Wang, Haolei Yuan, Haolei Yuan, Qiaoqiao Ding, Xiaoqun Zhang

Bone age assessment (BAA) is a widely used clinical practice for the biological development of adolescents. The Tanner Whitehouse (TW) method is a traditionally mainstream method that manually extracts multiple regions of interest (ROIs) related to skeletal maturity to infer bone age. In this paper, we propose a deep learning-based method for fully automatic ROIs localization and BAA. The method consists of two parts: a U-net-based backbone, selected for its strong performance in semantic segmentation, which enables precise and efficient localization without the need for complex pre- or post-processing. This method achieves a localization precision of 99.1% on the public RSNA dataset. Second, an InceptionResNetV2 network is utilized for feature extraction from both the ROIs and the whole image, as it effectively captures both local and global features, making it well-suited for bone age prediction. The BAA neural network combines the advantages of both ROIs-based methods (TW3 method) and global feature-based methods (GP method), providing high interpretability and accuracy. Numerical experiments demonstrate that the method achieves a mean absolute error (MAE) of 0.38 years for males and 0.45 years for females on the public RSNA dataset, and 0.41 years for males and 0.44 years for females on an in-house dataset, validating the accuracy of both localization and prediction.

{"title":"A fully automated U-net based ROIs localization and bone age assessment method.","authors":"Yuzhong Zhao, Yihao Wang, Haolei Yuan, Haolei Yuan, Qiaoqiao Ding, Xiaoqun Zhang","doi":"10.3934/mbe.2025007","DOIUrl":"https://doi.org/10.3934/mbe.2025007","url":null,"abstract":"<p><p>Bone age assessment (BAA) is a widely used clinical practice for the biological development of adolescents. The Tanner Whitehouse (TW) method is a traditionally mainstream method that manually extracts multiple regions of interest (ROIs) related to skeletal maturity to infer bone age. In this paper, we propose a deep learning-based method for fully automatic ROIs localization and BAA. The method consists of two parts: a U-net-based backbone, selected for its strong performance in semantic segmentation, which enables precise and efficient localization without the need for complex pre- or post-processing. This method achieves a localization precision of 99.1% on the public RSNA dataset. Second, an InceptionResNetV2 network is utilized for feature extraction from both the ROIs and the whole image, as it effectively captures both local and global features, making it well-suited for bone age prediction. The BAA neural network combines the advantages of both ROIs-based methods (TW3 method) and global feature-based methods (GP method), providing high interpretability and accuracy. Numerical experiments demonstrate that the method achieves a mean absolute error (MAE) of 0.38 years for males and 0.45 years for females on the public RSNA dataset, and 0.41 years for males and 0.44 years for females on an in-house dataset, validating the accuracy of both localization and prediction.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 1","pages":"138-151"},"PeriodicalIF":2.6,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Traveling waves in a free boundary problem for the spread of ecosystem engineers.
IF 2.6 4区 工程技术 Q1 Mathematics Pub Date : 2025-01-03 DOI: 10.3934/mbe.2025008
Maryam Basiri, Frithjof Lutscher, Abbas Moameni

Reaction-diffusion equations are a trusted modeling framework for the dynamics of biological populations in space and time, and their traveling wave solutions are interpreted as the density of an invasive species that spreads at constant speed. Even though certain species can significantly alter their abiotic environment for their benefit, and even though some of these so-called "ecosystem engineers" are among the most destructive invasive species, most models neglect this feedback. Here, we extended earlier work that studied traveling waves of ecosystem engineers with a logistic growth function to study the existence of traveling waves in the presence of a strong Allee effect. Our model consisted of suitable and unsuitable habitat, each a semi-infinite interval, separated by a moving interface. The speed of this boundary depended on the engineering activity of the species. On each of the intervals, we had a reaction-diffusion equation for the population density, and at the interface, we had matching conditions for density and flux. We used phase-plane analysis to detect and classify several qualitatively different types of traveling waves, most of which have previously not been described. We gave conditions for their existence for different biological scenarios of how individuals alter their abiotic environment. As an intermediate step, we studied the existence of traveling waves in a so-called "moving habitat model", which can be interpreted as a model for the effects of climate change on the spatial dynamics of populations.

{"title":"Traveling waves in a free boundary problem for the spread of ecosystem engineers.","authors":"Maryam Basiri, Frithjof Lutscher, Abbas Moameni","doi":"10.3934/mbe.2025008","DOIUrl":"https://doi.org/10.3934/mbe.2025008","url":null,"abstract":"<p><p>Reaction-diffusion equations are a trusted modeling framework for the dynamics of biological populations in space and time, and their traveling wave solutions are interpreted as the density of an invasive species that spreads at constant speed. Even though certain species can significantly alter their abiotic environment for their benefit, and even though some of these so-called \"ecosystem engineers\" are among the most destructive invasive species, most models neglect this feedback. Here, we extended earlier work that studied traveling waves of ecosystem engineers with a logistic growth function to study the existence of traveling waves in the presence of a strong Allee effect. Our model consisted of suitable and unsuitable habitat, each a semi-infinite interval, separated by a moving interface. The speed of this boundary depended on the engineering activity of the species. On each of the intervals, we had a reaction-diffusion equation for the population density, and at the interface, we had matching conditions for density and flux. We used phase-plane analysis to detect and classify several qualitatively different types of traveling waves, most of which have previously not been described. We gave conditions for their existence for different biological scenarios of how individuals alter their abiotic environment. As an intermediate step, we studied the existence of traveling waves in a so-called \"moving habitat model\", which can be interpreted as a model for the effects of climate change on the spatial dynamics of populations.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 1","pages":"152-184"},"PeriodicalIF":2.6,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust control and data reconstruction for nonlinear epidemiological models using feedback linearization and state estimation.
IF 2.6 4区 工程技术 Q1 Mathematics Pub Date : 2025-01-02 DOI: 10.3934/mbe.2025006
Balázs Csutak, Gábor Szederkényi

It has been clearly demonstrated over the past years that control theory can provide an efficient framework for the solution of several complex tasks in epidemiology. In this paper, we present a computational approach for the state estimation based reference tracking control and historical data reconstruction using nonlinear compartmental epidemic models. The control model is given in nonlinear input-affine form, where the manipulable input is the disease transmission rate influenced by possible measures and restrictions, while the observed or computed output is the number of infected people. The control design is built around a simple SEIR model and relies on a feedback linearization technique. We examine and compare different control setups distinguished by the availability of state information, complementing the directly measurable data with an extended Kalman filter used for state estimation. To illustrate the capabilities and robustness of the proposed method, we carry out multiple case studies for output tracking and data reconstruction on Swedish and Hungarian data, all in the presence of serious model and parameter mismatch. Computation results show that a well-designed feedback, even in the presence of significant observation uncertainties, can sufficiently reduce the effect of modeling errors.

{"title":"Robust control and data reconstruction for nonlinear epidemiological models using feedback linearization and state estimation.","authors":"Balázs Csutak, Gábor Szederkényi","doi":"10.3934/mbe.2025006","DOIUrl":"https://doi.org/10.3934/mbe.2025006","url":null,"abstract":"<p><p>It has been clearly demonstrated over the past years that control theory can provide an efficient framework for the solution of several complex tasks in epidemiology. In this paper, we present a computational approach for the state estimation based reference tracking control and historical data reconstruction using nonlinear compartmental epidemic models. The control model is given in nonlinear input-affine form, where the manipulable input is the disease transmission rate influenced by possible measures and restrictions, while the observed or computed output is the number of infected people. The control design is built around a simple SEIR model and relies on a feedback linearization technique. We examine and compare different control setups distinguished by the availability of state information, complementing the directly measurable data with an extended Kalman filter used for state estimation. To illustrate the capabilities and robustness of the proposed method, we carry out multiple case studies for output tracking and data reconstruction on Swedish and Hungarian data, all in the presence of serious model and parameter mismatch. Computation results show that a well-designed feedback, even in the presence of significant observation uncertainties, can sufficiently reduce the effect of modeling errors.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 1","pages":"109-137"},"PeriodicalIF":2.6,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational physics and imaging in medicine.
IF 2.6 4区 工程技术 Q1 Mathematics Pub Date : 2025-01-02 DOI: 10.3934/mbe.2025005
James C L Chow
{"title":"Computational physics and imaging in medicine.","authors":"James C L Chow","doi":"10.3934/mbe.2025005","DOIUrl":"https://doi.org/10.3934/mbe.2025005","url":null,"abstract":"","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 1","pages":"106-108"},"PeriodicalIF":2.6,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probabilistic prediction intervals of short-term wind speed using selected features and time shift dependent machine learning models.
IF 2.6 4区 工程技术 Q1 Mathematics Pub Date : 2025-01-01 Epub Date: 2024-12-17 DOI: 10.3934/mbe.2025002
Rami Al-Hajj, Gholamreza Oskrochi, Mohamad M Fouad, Ali Assi

Forecasting wind speed plays an increasingly essential role in the wind energy industry. However, wind speed is uncertain with high changeability and dependency on weather conditions. Variability of wind energy is directly influenced by the fluctuation and unpredictability of wind speed. Traditional wind speed prediction methods provide deterministic forecasting that fails to estimate the uncertainties associated with wind speed predictions. Modeling those uncertainties is important to provide reliable information when the uncertainty level increases. Models for estimating prediction intervals of wind speed do not differentiate between daytime and nighttime shifts, which can affect the performance of probabilistic wind speed forecasting. In this paper, we introduce a prediction framework for deterministic and probabilistic short-term wind speed forecasting. The designed framework incorporates independent machine learning (ML) models to estimate point and interval prediction of wind speed during the daytime and nighttime shifts, respectively. First, feature selection techniques were applied to maintain the most relevant parameters in the datasets of daytime and nighttime shifts, respectively. Second, support vector regressors (SVRs) were used to predict the wind speed 10 minutes ahead. After that, we incorporated the non-parametric kernel density estimation (KDE) method to statistically synthesize the wind speed prediction errors and estimate the prediction intervals (PI) with several confidence levels. The simulation results validated the effectiveness of our framework and demonstrated that it can generate prediction intervals that are satisfactory in all evaluation criteria. This verifies the validity and feasibility of the hypothesis of separating the daytime and nighttime data sets for these types of predictions.

风速预测在风能产业中发挥着越来越重要的作用。然而,风速是不确定的,具有高度的可变性和对天气条件的依赖性。风能的可变性直接受到风速波动和不可预测性的影响。传统的风速预测方法提供的是确定性预测,无法估计与风速预测相关的不确定性。当不确定性水平增加时,模拟这些不确定性对于提供可靠信息非常重要。估算风速预测区间的模型没有区分白天和夜间的变化,这会影响概率风速预测的性能。本文介绍了一种用于确定性和概率性短期风速预测的预测框架。所设计的框架结合了独立的机器学习(ML)模型,分别对白天和夜间的风速进行点预测和区间预测。首先,应用特征选择技术分别保留白班和夜班数据集中最相关的参数。其次,使用支持向量回归器(SVR)预测提前 10 分钟的风速。之后,我们采用非参数核密度估计(KDE)方法对风速预测误差进行统计综合,并估算出多个置信度的预测区间(PI)。模拟结果验证了我们框架的有效性,并表明它可以生成在所有评估标准中都令人满意的预测区间。这验证了将白天和夜间数据集分开进行此类预测的假设的有效性和可行性。
{"title":"Probabilistic prediction intervals of short-term wind speed using selected features and time shift dependent machine learning models.","authors":"Rami Al-Hajj, Gholamreza Oskrochi, Mohamad M Fouad, Ali Assi","doi":"10.3934/mbe.2025002","DOIUrl":"https://doi.org/10.3934/mbe.2025002","url":null,"abstract":"<p><p>Forecasting wind speed plays an increasingly essential role in the wind energy industry. However, wind speed is uncertain with high changeability and dependency on weather conditions. Variability of wind energy is directly influenced by the fluctuation and unpredictability of wind speed. Traditional wind speed prediction methods provide deterministic forecasting that fails to estimate the uncertainties associated with wind speed predictions. Modeling those uncertainties is important to provide reliable information when the uncertainty level increases. Models for estimating prediction intervals of wind speed do not differentiate between daytime and nighttime shifts, which can affect the performance of probabilistic wind speed forecasting. In this paper, we introduce a prediction framework for deterministic and probabilistic short-term wind speed forecasting. The designed framework incorporates independent machine learning (ML) models to estimate point and interval prediction of wind speed during the daytime and nighttime shifts, respectively. First, feature selection techniques were applied to maintain the most relevant parameters in the datasets of daytime and nighttime shifts, respectively. Second, support vector regressors (SVRs) were used to predict the wind speed 10 minutes ahead. After that, we incorporated the non-parametric kernel density estimation (KDE) method to statistically synthesize the wind speed prediction errors and estimate the prediction intervals (PI) with several confidence levels. The simulation results validated the effectiveness of our framework and demonstrated that it can generate prediction intervals that are satisfactory in all evaluation criteria. This verifies the validity and feasibility of the hypothesis of separating the daytime and nighttime data sets for these types of predictions.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 1","pages":"23-51"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic models of population growth.
IF 2.6 4区 工程技术 Q1 Mathematics Pub Date : 2025-01-01 Epub Date: 2024-12-16 DOI: 10.3934/mbe.2025001
Katarzyna Pichór, Pejman Sanaei

We considered three types of stochastic models of a single population growth: with diffusion-type noise; with parameters replaced by stochastic processes; and with random jumps describing a sudden decrease in population size. We presented methods for studying stochastic processes modeling population growth, in particular, the long-time behavior of sample paths and their distributions. We were especially interested in the asymptotic stability of the density of the distributions of these processes. We gave biological interpretations, examples, and numerical simulations of theoretical methods and results.

{"title":"Stochastic models of population growth.","authors":"Katarzyna Pichór, Pejman Sanaei","doi":"10.3934/mbe.2025001","DOIUrl":"https://doi.org/10.3934/mbe.2025001","url":null,"abstract":"<p><p>We considered three types of stochastic models of a single population growth: with diffusion-type noise; with parameters replaced by stochastic processes; and with random jumps describing a sudden decrease in population size. We presented methods for studying stochastic processes modeling population growth, in particular, the long-time behavior of sample paths and their distributions. We were especially interested in the asymptotic stability of the density of the distributions of these processes. We gave biological interpretations, examples, and numerical simulations of theoretical methods and results.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 1","pages":"1-22"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epileptic seizure detection in EEG signals via an enhanced hybrid CNN with an integrated attention mechanism.
IF 2.6 4区 工程技术 Q1 Mathematics Pub Date : 2025-01-01 Epub Date: 2024-12-25 DOI: 10.3934/mbe.2025004
Sakorn Mekruksavanich, Wikanda Phaphan, Anuchit Jitpattanakul

Epileptic seizures, a prevalent neurological condition, necessitate precise and prompt identification for optimal care. Nevertheless, the intricate characteristics of electroencephalography (EEG) signals, noise, and the want for real-time analysis require enhancement in the creation of dependable detection approaches. Despite advances in machine learning and deep learning, capturing the intricate spatial and temporal patterns in EEG data remains challenging. This study introduced a novel deep learning framework combining a convolutional neural network (CNN), bidirectional gated recurrent unit (BiGRU), and convolutional block attention module (CBAM). The CNN extracts spatial features, the BiGRU captures long-term temporal dependencies, and the CBAM emphasizes critical spatial and temporal regions, creating a hybrid architecture optimized for EEG pattern recognition. Evaluation of a public EEG dataset revealed superior performance compared to existing methods. The model achieved 99.00% accuracy in binary classification, 96.20% in three-class tasks, 92.00% in four-class scenarios, and 89.00% in five-class classification. High sensitivity (89.00-99.00%) and specificity (89.63-99.00%) across all tasks highlighted the model's robust ability to identify diverse EEG patterns. This approach supports healthcare professionals in diagnosing epileptic seizures accurately and promptly, improving patient outcomes and quality of life.

{"title":"Epileptic seizure detection in EEG signals via an enhanced hybrid CNN with an integrated attention mechanism.","authors":"Sakorn Mekruksavanich, Wikanda Phaphan, Anuchit Jitpattanakul","doi":"10.3934/mbe.2025004","DOIUrl":"https://doi.org/10.3934/mbe.2025004","url":null,"abstract":"<p><p>Epileptic seizures, a prevalent neurological condition, necessitate precise and prompt identification for optimal care. Nevertheless, the intricate characteristics of electroencephalography (EEG) signals, noise, and the want for real-time analysis require enhancement in the creation of dependable detection approaches. Despite advances in machine learning and deep learning, capturing the intricate spatial and temporal patterns in EEG data remains challenging. This study introduced a novel deep learning framework combining a convolutional neural network (CNN), bidirectional gated recurrent unit (BiGRU), and convolutional block attention module (CBAM). The CNN extracts spatial features, the BiGRU captures long-term temporal dependencies, and the CBAM emphasizes critical spatial and temporal regions, creating a hybrid architecture optimized for EEG pattern recognition. Evaluation of a public EEG dataset revealed superior performance compared to existing methods. The model achieved 99.00% accuracy in binary classification, 96.20% in three-class tasks, 92.00% in four-class scenarios, and 89.00% in five-class classification. High sensitivity (89.00-99.00%) and specificity (89.63-99.00%) across all tasks highlighted the model's robust ability to identify diverse EEG patterns. This approach supports healthcare professionals in diagnosing epileptic seizures accurately and promptly, improving patient outcomes and quality of life.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 1","pages":"73-105"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical modeling of microtube-driven regrowth of gliomas after local resection.
IF 2.6 4区 工程技术 Q1 Mathematics Pub Date : 2025-01-01 Epub Date: 2024-12-24 DOI: 10.3934/mbe.2025003
Alexandra Shyntar, Thomas Hillen

Recently, glioblastoma tumors were shown to form tumor microtubes, which are thin, long protrusions that help the tumor grow and spread. Follow-up experiments were conducted on mice in order to test what impact the tumor microtubes have on tumor regrowth after the partial removal of a tumor region. The surgery was performed in isolation and along with growth-inhibiting treatments such as a tumor microtube-inhibiting treatment and an anti-inflammatory treatment. Here, we have proposed a partial differential equation model applicable to describe the microtube-driven regrowth of the cancer in the lesion. We found that the model is able to replicate the main trends seen in the experiments such as fast regrowth, larger cancer density in the lesion, and further spread into healthy tissue. The model indicates that the dominant mechanisms of re-growth are growth-inducing wound-healing mechanisms and the proliferative advantage from the tumor microtubes. In addition, tumor microtubes provide orientational guidance from the untreated tissue into the lesion.

{"title":"Mathematical modeling of microtube-driven regrowth of gliomas after local resection.","authors":"Alexandra Shyntar, Thomas Hillen","doi":"10.3934/mbe.2025003","DOIUrl":"https://doi.org/10.3934/mbe.2025003","url":null,"abstract":"<p><p>Recently, glioblastoma tumors were shown to form tumor microtubes, which are thin, long protrusions that help the tumor grow and spread. Follow-up experiments were conducted on mice in order to test what impact the tumor microtubes have on tumor regrowth after the partial removal of a tumor region. The surgery was performed in isolation and along with growth-inhibiting treatments such as a tumor microtube-inhibiting treatment and an anti-inflammatory treatment. Here, we have proposed a partial differential equation model applicable to describe the microtube-driven regrowth of the cancer in the lesion. We found that the model is able to replicate the main trends seen in the experiments such as fast regrowth, larger cancer density in the lesion, and further spread into healthy tissue. The model indicates that the dominant mechanisms of re-growth are growth-inducing wound-healing mechanisms and the proliferative advantage from the tumor microtubes. In addition, tumor microtubes provide orientational guidance from the untreated tissue into the lesion.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 1","pages":"52-72"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to "Data augmentation based semi-supervised method to improve COVID-19 CT classification" [Mathematical Biosciences and Engineering 20(4) (2023) 6838-6852]. 修正“基于数据增强的改进COVID-19 CT分类的半监督方法”[数学生物科学与工程20(4)(2023)6838-6852]。
IF 2.6 4区 工程技术 Q1 Mathematics Pub Date : 2024-12-13 DOI: 10.3934/mbe.2024345
Xiangtao Chen, Yuting Bai, Peng Wang, Jiawei Luo
{"title":"Correction to \"Data augmentation based semi-supervised method to improve COVID-19 CT classification\" [<i>Mathematical Biosciences and Engineering</i> 20(4) (2023) 6838-6852].","authors":"Xiangtao Chen, Yuting Bai, Peng Wang, Jiawei Luo","doi":"10.3934/mbe.2024345","DOIUrl":"https://doi.org/10.3934/mbe.2024345","url":null,"abstract":"","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 12","pages":"7854-7855"},"PeriodicalIF":2.6,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mathematical Biosciences and Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1