Rebecca Lowndes , Richard Aveyard , Lauren E. Welbourne , Alex Wade , Antony B. Morland
{"title":"In primary visual cortex fMRI responses to chromatic and achromatic stimuli are interdependent and predict contrast detection thresholds","authors":"Rebecca Lowndes , Richard Aveyard , Lauren E. Welbourne , Alex Wade , Antony B. Morland","doi":"10.1016/j.visres.2024.108398","DOIUrl":null,"url":null,"abstract":"<div><p>Chromatic and achromatic signals in primary visual cortex have historically been considered independent of each other but have since shown evidence of interdependence. Here, we investigated the combination of two components of a stimulus; an achromatic dynamically changing check background and a chromatic (L-M or S cone) target grating. We found that combinations of chromatic and achromatic signals in primary visual cortex were interdependent, with the dynamic range of responses to chromatic contrast decreasing as achromatic contrast increased. A contrast detection threshold study also revealed interdependence of background and target, with increasing chromatic contrast detection thresholds as achromatic background contrast increased. A model that incorporated a normalising effect of achromatic contrast on chromatic responses, but not vice versa, best predicted our V1 data as well as behavioural thresholds. Further along the visual hierarchy, the dynamic range of chromatic responses was maintained when compared to achromatic responses, which became increasingly compressive.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"218 ","pages":"Article 108398"},"PeriodicalIF":1.5000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0042698924000427/pdfft?md5=c30ad17f732af3a459f72baaa17accdd&pid=1-s2.0-S0042698924000427-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042698924000427","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chromatic and achromatic signals in primary visual cortex have historically been considered independent of each other but have since shown evidence of interdependence. Here, we investigated the combination of two components of a stimulus; an achromatic dynamically changing check background and a chromatic (L-M or S cone) target grating. We found that combinations of chromatic and achromatic signals in primary visual cortex were interdependent, with the dynamic range of responses to chromatic contrast decreasing as achromatic contrast increased. A contrast detection threshold study also revealed interdependence of background and target, with increasing chromatic contrast detection thresholds as achromatic background contrast increased. A model that incorporated a normalising effect of achromatic contrast on chromatic responses, but not vice versa, best predicted our V1 data as well as behavioural thresholds. Further along the visual hierarchy, the dynamic range of chromatic responses was maintained when compared to achromatic responses, which became increasingly compressive.
期刊介绍:
Vision Research is a journal devoted to the functional aspects of human, vertebrate and invertebrate vision and publishes experimental and observational studies, reviews, and theoretical and computational analyses. Vision Research also publishes clinical studies relevant to normal visual function and basic research relevant to visual dysfunction or its clinical investigation. Functional aspects of vision is interpreted broadly, ranging from molecular and cellular function to perception and behavior. Detailed descriptions are encouraged but enough introductory background should be included for non-specialists. Theoretical and computational papers should give a sense of order to the facts or point to new verifiable observations. Papers dealing with questions in the history of vision science should stress the development of ideas in the field.