Nonlinear approximation of high-dimensional anisotropic analytic functions

IF 0.9 3区 数学 Q2 MATHEMATICS Journal of Approximation Theory Pub Date : 2024-03-13 DOI:10.1016/j.jat.2024.106040
Diane Guignard , Peter Jantsch
{"title":"Nonlinear approximation of high-dimensional anisotropic analytic functions","authors":"Diane Guignard ,&nbsp;Peter Jantsch","doi":"10.1016/j.jat.2024.106040","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by nonlinear approximation results for classes of parametric partial differential equations (PDEs), we seek to better understand so-called library approximations to analytic functions of countably infinite number of variables. Rather than approximating a function of interest by a single space, a library approximation uses a collection of spaces and the best space may be chosen for any point in the domain. In the setting of this paper, we use a specific library which consists of local Taylor approximations on sufficiently small rectangular subdomains of the (rescaled) parameter domain <span><math><mrow><mi>Y</mi><mo>≔</mo><msup><mrow><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span>. When the function of interest is the solution of a certain type of parametric PDE, recent results (Bonito et al., 2021 <span>[4]</span>) prove an upper bound on the number of spaces required to achieve a desired target accuracy. In this work, we prove a similar result for a more general class of functions with anisotropic analyticity, namely the class introduced in Bonito et al. (2021) <span>[5]</span>. In this way we show both where the theory developed in Bonito et al. (2021) <span>[4]</span> depends on being in the setting of parametric PDEs with affine diffusion coefficients, and prove a more general result outside of this setting.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021904524000261/pdfft?md5=37c84e9e2faa6a5470ebb676b660de8f&pid=1-s2.0-S0021904524000261-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524000261","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by nonlinear approximation results for classes of parametric partial differential equations (PDEs), we seek to better understand so-called library approximations to analytic functions of countably infinite number of variables. Rather than approximating a function of interest by a single space, a library approximation uses a collection of spaces and the best space may be chosen for any point in the domain. In the setting of this paper, we use a specific library which consists of local Taylor approximations on sufficiently small rectangular subdomains of the (rescaled) parameter domain Y[1,1]N. When the function of interest is the solution of a certain type of parametric PDE, recent results (Bonito et al., 2021 [4]) prove an upper bound on the number of spaces required to achieve a desired target accuracy. In this work, we prove a similar result for a more general class of functions with anisotropic analyticity, namely the class introduced in Bonito et al. (2021) [5]. In this way we show both where the theory developed in Bonito et al. (2021) [4] depends on being in the setting of parametric PDEs with affine diffusion coefficients, and prove a more general result outside of this setting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维各向异性分析函数的非线性逼近
受参数偏微分方程(PDE)类非线性近似结果的启发,我们试图更好地理解对可数无限变量解析函数的所谓库近似。库近似不是用单一空间来近似感兴趣的函数,而是使用一系列空间,并且可以为域中的任意点选择最佳空间。在本文中,我们使用了一个特定的库,它由参数域 Y≔[-1,1]N(已重标)的足够小的矩形子域上的局部泰勒逼近组成。当感兴趣的函数是某类参数 PDE 的解时,最近的结果(Bonito 等人,2021 [4])证明了达到预期目标精度所需的空间数量上限。在这项工作中,我们为一类更普遍的各向异性解析函数证明了类似的结果,即 Bonito 等人 (2021) [5] 中介绍的那类函数。通过这种方法,我们既说明了 Bonito 等人 (2021) [4] 中提出的理论在哪些方面依赖于具有仿射扩散系数的参数 PDE,又证明了在此背景之外的更一般的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
期刊最新文献
Optimization-aided construction of multivariate Chebyshev polynomials In search of a higher Bochner theorem Positive orthogonalizing weights on the unit circle for the generalized Bessel polynomials Editorial Board On the representability of a continuous multivariate function by sums of ridge functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1