Analysis of characteristic index and prediction of river bottom tearing scour in the Yellow River

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2024-03-01 DOI:10.2166/hydro.2024.247
Longfei Sun, Yanhui Liu, Yuanjian Wang, Qinghao Dong, Wanjie Zhao
{"title":"Analysis of characteristic index and prediction of river bottom tearing scour in the Yellow River","authors":"Longfei Sun, Yanhui Liu, Yuanjian Wang, Qinghao Dong, Wanjie Zhao","doi":"10.2166/hydro.2024.247","DOIUrl":null,"url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/3/10.2166_hydro.2024.247/2/m_hydro-d-23-00247gf01.png?Expires=1714738699&amp;Signature=PJnFubWAYWjMkyJaokTkc4qSRYjm4eWNYjpTIP1GH7R~jo7MfFn-Ls8KecoZNPNIt0GhaJkoFCsLePZzT0-HdoZDMGyjNAvX9phNB9m226KgoyPpYr54aduvWKES3lKt7u8leKHhTk9bFdnGybok1Q~Y3DbB-ih6JGVuaK3EHfSKV8vtt-ISfa4bR8eNtxOEHMSE8~1H4XA65odwmBqUkLKL6JwywQArhRQLfu1QBk~E5Bv08l6iaDSmFTFrqT1W5vTIIf0L9h2IHhhSphH1LNokg26bxMgDJYgF4EZogjzK56K648SPhhbosgr5bYm-kJm36umew7pShhOMImT0Eg__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00247gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/3/10.2166_hydro.2024.247/2/m_hydro-d-23-00247gf01.png?Expires=1714738699&amp;Signature=PJnFubWAYWjMkyJaokTkc4qSRYjm4eWNYjpTIP1GH7R~jo7MfFn-Ls8KecoZNPNIt0GhaJkoFCsLePZzT0-HdoZDMGyjNAvX9phNB9m226KgoyPpYr54aduvWKES3lKt7u8leKHhTk9bFdnGybok1Q~Y3DbB-ih6JGVuaK3EHfSKV8vtt-ISfa4bR8eNtxOEHMSE8~1H4XA65odwmBqUkLKL6JwywQArhRQLfu1QBk~E5Bv08l6iaDSmFTFrqT1W5vTIIf0L9h2IHhhSphH1LNokg26bxMgDJYgF4EZogjzK56K648SPhhbosgr5bYm-kJm36umew7pShhOMImT0Eg__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/3/10.2166_hydro.2024.247/2/m_hydro-d-23-00247gf01.png?Expires=1714738699&amp;Signature=PJnFubWAYWjMkyJaokTkc4qSRYjm4eWNYjpTIP1GH7R~jo7MfFn-Ls8KecoZNPNIt0GhaJkoFCsLePZzT0-HdoZDMGyjNAvX9phNB9m226KgoyPpYr54aduvWKES3lKt7u8leKHhTk9bFdnGybok1Q~Y3DbB-ih6JGVuaK3EHfSKV8vtt-ISfa4bR8eNtxOEHMSE8~1H4XA65odwmBqUkLKL6JwywQArhRQLfu1QBk~E5Bv08l6iaDSmFTFrqT1W5vTIIf0L9h2IHhhSphH1LNokg26bxMgDJYgF4EZogjzK56K648SPhhbosgr5bYm-kJm36umew7pShhOMImT0Eg__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00247gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/3/10.2166_hydro.2024.247/2/m_hydro-d-23-00247gf01.png?Expires=1714738699&amp;Signature=PJnFubWAYWjMkyJaokTkc4qSRYjm4eWNYjpTIP1GH7R~jo7MfFn-Ls8KecoZNPNIt0GhaJkoFCsLePZzT0-HdoZDMGyjNAvX9phNB9m226KgoyPpYr54aduvWKES3lKt7u8leKHhTk9bFdnGybok1Q~Y3DbB-ih6JGVuaK3EHfSKV8vtt-ISfa4bR8eNtxOEHMSE8~1H4XA65odwmBqUkLKL6JwywQArhRQLfu1QBk~E5Bv08l6iaDSmFTFrqT1W5vTIIf0L9h2IHhhSphH1LNokg26bxMgDJYgF4EZogjzK56K648SPhhbosgr5bYm-kJm36umew7pShhOMImT0Eg__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>River bottom tearing scour (RBTS) has a strong effect on the scouring and moulding of channel in the Yellow River. Due to the special forming conditions, complex influencing factors, and limited observed data, it is difficult to predict whether RBTS will occur accurately. By collecting and disposing of the hydrodynamic, sediment, and initial boundary data of 246 flood events related to RBTS in three typical reaches of the Yellow River basin, the correlation between different characteristic influencing factors and the occurrence and absence of RBTS were analysed, and prediction models based on machine learning algorithms were constructed. The results showed that under the existing data conditions, the maximum sediment concentration <em>S<sub>m</sub></em>, average sediment concentration <em>S<sub>p</sub></em>, flood growth rate <em>ν</em>, and shape coefficient <em>δ</em> were the four key indices to more easily distinguish whether RBTS will occur. The support vector machine algorithm model had the best performance results and exhibited higher accuracy and precision in predicting its occurrence compared with other models under given water and sediment conditions. The method proposed in this study provides a new method for accurately predicting RBTS in the Yellow River.</p>","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.247","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image
View largeDownload slide
Abstract Image
View largeDownload slide
Close modal

River bottom tearing scour (RBTS) has a strong effect on the scouring and moulding of channel in the Yellow River. Due to the special forming conditions, complex influencing factors, and limited observed data, it is difficult to predict whether RBTS will occur accurately. By collecting and disposing of the hydrodynamic, sediment, and initial boundary data of 246 flood events related to RBTS in three typical reaches of the Yellow River basin, the correlation between different characteristic influencing factors and the occurrence and absence of RBTS were analysed, and prediction models based on machine learning algorithms were constructed. The results showed that under the existing data conditions, the maximum sediment concentration Sm, average sediment concentration Sp, flood growth rate ν, and shape coefficient δ were the four key indices to more easily distinguish whether RBTS will occur. The support vector machine algorithm model had the best performance results and exhibited higher accuracy and precision in predicting its occurrence compared with other models under given water and sediment conditions. The method proposed in this study provides a new method for accurately predicting RBTS in the Yellow River.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黄河河底撕裂冲刷特征指标分析与预测
View largeDownload slideView largeDownload slide Close modal河底撕裂冲刷(RBTS)对黄河河道的冲淤成型影响很大。由于黄河河道形成条件特殊、影响因素复杂、观测资料有限,很难准确预测河底撕裂冲刷是否会发生。通过收集和处理黄河流域三个典型河段 246 次与 RBTS 相关洪水事件的水动力、泥沙和初界数据,分析了不同特征影响因素与 RBTS 发生与否的相关性,并构建了基于机器学习算法的预测模型。结果表明,在现有数据条件下,最大泥沙浓度 Sm、平均泥沙浓度 Sp、洪水增长率 ν 和形状系数 δ 是较易区分 RBTS 是否发生的四个关键指标。在给定的水和泥沙条件下,与其他模型相比,支持向量机算法模型的性能结果最好,在预测其发生方面表现出更高的准确度和精确度。本研究提出的方法为准确预测黄河 RBTS 提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
Sensitivity of model-based leakage localisation in water distribution networks to water demand sampling rates and spatio-temporal data gaps Efficient functioning of a sewer system: application of novel hybrid machine learning methods for the prediction of particle Froude number Quantile mapping technique for enhancing satellite-derived precipitation data in hydrological modelling: a case study of the Lam River Basin, Vietnam Development and application of a hybrid artificial neural network model for simulating future stream flows in catchments with limited in situ observed data Formation of meandering streams in a young floodplain within the Yarlung Tsangpo Grand Canyon in the Tibetan Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1