Ali Al-Maktoumi, Mohammad Mahdi Rajabi, Slim Zekri, Rajesh Govindan, Aref Panjehfouladgaran, Zahra Hajibagheri
This study presents the ‘Dual Path CNN-MLP’, a novel hybrid deep neural network (DNN) architecture that merges the strengths of convolutional neural networks (CNNs) and multilayer perceptrons (MLPs) for regional groundwater flow simulations. This model stands out from previous DNN approaches by managing mixed input types, including both imagery and numerical vectors. Such flexibility allows the diverse nature of groundwater data to be efficiently utilized without the need to convert it into a uniform format, which often leads to oversimplification or unnecessary expansion of the dataset. When applied to the northeast Qatar aquifer, the model demonstrates high accuracy in simulating transient groundwater flow fields, benchmarked against the well-established MODFLOW model. The model's efficacy is confirmed through k-fold cross-validation, showing an error margin of less than 12% across all examined locations. The study also examines the model's ability to perform uncertainty analysis using Monte Carlo simulations, finding that it achieves around 1% average absolute percentage error in estimating the mean hydraulic head. Errors are mostly found in areas with significant variations in the hydraulic head. Switching to this machine learning model from the conventional MODFLOW simulator boosts computational efficiency by about 99%, showcasing its advantage for tasks like uncertainty analysis in repetitive groundwater simulations.
{"title":"Accelerating regional-scale groundwater flow simulations with a hybrid deep neural network model incorporating mixed input types: A case study of the northeast Qatar aquifer","authors":"Ali Al-Maktoumi, Mohammad Mahdi Rajabi, Slim Zekri, Rajesh Govindan, Aref Panjehfouladgaran, Zahra Hajibagheri","doi":"10.2166/hydro.2024.275","DOIUrl":"https://doi.org/10.2166/hydro.2024.275","url":null,"abstract":"<p>This study presents the ‘Dual Path CNN-MLP’, a novel hybrid deep neural network (DNN) architecture that merges the strengths of convolutional neural networks (CNNs) and multilayer perceptrons (MLPs) for regional groundwater flow simulations. This model stands out from previous DNN approaches by managing mixed input types, including both imagery and numerical vectors. Such flexibility allows the diverse nature of groundwater data to be efficiently utilized without the need to convert it into a uniform format, which often leads to oversimplification or unnecessary expansion of the dataset. When applied to the northeast Qatar aquifer, the model demonstrates high accuracy in simulating transient groundwater flow fields, benchmarked against the well-established MODFLOW model. The model's efficacy is confirmed through <em>k</em>-fold cross-validation, showing an error margin of less than 12% across all examined locations. The study also examines the model's ability to perform uncertainty analysis using Monte Carlo simulations, finding that it achieves around 1% average absolute percentage error in estimating the mean hydraulic head. Errors are mostly found in areas with significant variations in the hydraulic head. Switching to this machine learning model from the conventional MODFLOW simulator boosts computational efficiency by about 99%, showcasing its advantage for tasks like uncertainty analysis in repetitive groundwater simulations.</p>","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"30 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141531488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<div><div data- reveal-group-><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.285/1/m_hydro-d-23-00285gf01.png?Expires=1722776531&Signature=fzcnkQR2-2BId91KCizNTxQeaQ6fzTXeOpk5iiQ11CgnaJp~zCbqs-W4ADrr-4H56dTw4YpDE2umo9ru66tRlelR-HNh79KpDaxof~HKccwEiCxsi25D9WE7oZBJ9ratf6TVwKEvHV0Q8Wl6Kv7p6AyXQNk0lbqrJEJsOSQiFEoYsilEX04eciQGPQKxNlXo8eLfi3xhs5ba7DhcjXBg-KFrr1ylb03S~75HJVPRChuCN3CnZxKDGDDVixLI92fwjyunfJgAZFXIRvVEjdHsOfvmU5Z-EwBNil5ZeMJQ7vgv8eqs7xO4MIwo4j~65L3Oe~BToMRNBx6E1cdPYDNCPg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydro-d-23-00285gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.285/1/m_hydro-d-23-00285gf01.png?Expires=1722776531&Signature=fzcnkQR2-2BId91KCizNTxQeaQ6fzTXeOpk5iiQ11CgnaJp~zCbqs-W4ADrr-4H56dTw4YpDE2umo9ru66tRlelR-HNh79KpDaxof~HKccwEiCxsi25D9WE7oZBJ9ratf6TVwKEvHV0Q8Wl6Kv7p6AyXQNk0lbqrJEJsOSQiFEoYsilEX04eciQGPQKxNlXo8eLfi3xhs5ba7DhcjXBg-KFrr1ylb03S~75HJVPRChuCN3CnZxKDGDDVixLI92fwjyunfJgAZFXIRvVEjdHsOfvmU5Z-EwBNil5ZeMJQ7vgv8eqs7xO4MIwo4j~65L3Oe~BToMRNBx6E1cdPYDNCPg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div></div><div content- data-reveal="data-reveal"><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.285/1/m_hydro-d-23-00285gf01.png?Expires=1722776531&Signature=fzcnkQR2-2BId91KCizNTxQeaQ6fzTXeOpk5iiQ11CgnaJp~zCbqs-W4ADrr-4H56dTw4YpDE2umo9ru66tRlelR-HNh79KpDaxof~HKccwEiCxsi25D9WE7oZBJ9ratf6TVwKEvHV0Q8Wl6Kv7p6AyXQNk0lbqrJEJsOSQiFEoYsilEX04eciQGPQKxNlXo8eLfi3xhs5ba7DhcjXBg-KFrr1ylb03S~75HJVPRChuCN3CnZxKDGDDVixLI92fwjyunfJgAZFXIRvVEjdHsOfvmU5Z-EwBNil5ZeMJQ7vgv8eqs7xO4MIwo4j~65L3Oe~BToMRNBx6E1cdPYDNCPg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydro-d-23-00285gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.285/1/m_hydro-d-23-00285gf01.png?Expires=1722776531&Signature=fzcnkQR2-2BId91KCizNTxQeaQ6fzTXeOpk5iiQ11CgnaJp~zCbqs-W4ADrr-4H56dTw4YpDE2umo9ru66tRlelR-HNh79KpDaxof~HKccwEiCxsi25D9WE7oZBJ9ratf6TVwKEvHV0Q8Wl6Kv7p6AyXQNk0lbqrJEJsOSQiFEoYsilEX04eciQGPQKxNlXo8eLfi3xhs5ba7DhcjXBg-KFrr1ylb03S~75HJVPRChuCN3CnZxKDGDDVixLI92fwjyunfJgAZFXIRvVEjdHsOfvmU5Z-EwBNil5ZeMJQ7vgv8eqs7xO4MIwo4j~65L3Oe~BToMRNBx6E1cdPYDNCPg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>In a complex pressurized water diversion project (WDP), the combined optimal operation of multiple hydraulic facilities is computationally expensive owing to the requirement of massive mathematical simulation model runs. A parallel multi-objective optimization based on adaptive surrogate model (PMO-ASMO) was proposed in this study to alleviate the computational burden while maintaining its effectiveness. At the simulation level, an adaptive surrogate model was established, while a paralle
{"title":"A parallel multi-objective optimization based on adaptive surrogate model for combined operation of multiple hydraulic facilities in water diversion project","authors":"Xiaolian Liu, Zirong Liu, Xiaopeng Hou, Yu Tian, Xueni Wang, Leike Zhang, Hao Wang","doi":"10.2166/hydro.2024.285","DOIUrl":"https://doi.org/10.2166/hydro.2024.285","url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.285/1/m_hydro-d-23-00285gf01.png?Expires=1722776531&Signature=fzcnkQR2-2BId91KCizNTxQeaQ6fzTXeOpk5iiQ11CgnaJp~zCbqs-W4ADrr-4H56dTw4YpDE2umo9ru66tRlelR-HNh79KpDaxof~HKccwEiCxsi25D9WE7oZBJ9ratf6TVwKEvHV0Q8Wl6Kv7p6AyXQNk0lbqrJEJsOSQiFEoYsilEX04eciQGPQKxNlXo8eLfi3xhs5ba7DhcjXBg-KFrr1ylb03S~75HJVPRChuCN3CnZxKDGDDVixLI92fwjyunfJgAZFXIRvVEjdHsOfvmU5Z-EwBNil5ZeMJQ7vgv8eqs7xO4MIwo4j~65L3Oe~BToMRNBx6E1cdPYDNCPg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00285gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.285/1/m_hydro-d-23-00285gf01.png?Expires=1722776531&Signature=fzcnkQR2-2BId91KCizNTxQeaQ6fzTXeOpk5iiQ11CgnaJp~zCbqs-W4ADrr-4H56dTw4YpDE2umo9ru66tRlelR-HNh79KpDaxof~HKccwEiCxsi25D9WE7oZBJ9ratf6TVwKEvHV0Q8Wl6Kv7p6AyXQNk0lbqrJEJsOSQiFEoYsilEX04eciQGPQKxNlXo8eLfi3xhs5ba7DhcjXBg-KFrr1ylb03S~75HJVPRChuCN3CnZxKDGDDVixLI92fwjyunfJgAZFXIRvVEjdHsOfvmU5Z-EwBNil5ZeMJQ7vgv8eqs7xO4MIwo4j~65L3Oe~BToMRNBx6E1cdPYDNCPg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.285/1/m_hydro-d-23-00285gf01.png?Expires=1722776531&Signature=fzcnkQR2-2BId91KCizNTxQeaQ6fzTXeOpk5iiQ11CgnaJp~zCbqs-W4ADrr-4H56dTw4YpDE2umo9ru66tRlelR-HNh79KpDaxof~HKccwEiCxsi25D9WE7oZBJ9ratf6TVwKEvHV0Q8Wl6Kv7p6AyXQNk0lbqrJEJsOSQiFEoYsilEX04eciQGPQKxNlXo8eLfi3xhs5ba7DhcjXBg-KFrr1ylb03S~75HJVPRChuCN3CnZxKDGDDVixLI92fwjyunfJgAZFXIRvVEjdHsOfvmU5Z-EwBNil5ZeMJQ7vgv8eqs7xO4MIwo4j~65L3Oe~BToMRNBx6E1cdPYDNCPg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00285gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.285/1/m_hydro-d-23-00285gf01.png?Expires=1722776531&Signature=fzcnkQR2-2BId91KCizNTxQeaQ6fzTXeOpk5iiQ11CgnaJp~zCbqs-W4ADrr-4H56dTw4YpDE2umo9ru66tRlelR-HNh79KpDaxof~HKccwEiCxsi25D9WE7oZBJ9ratf6TVwKEvHV0Q8Wl6Kv7p6AyXQNk0lbqrJEJsOSQiFEoYsilEX04eciQGPQKxNlXo8eLfi3xhs5ba7DhcjXBg-KFrr1ylb03S~75HJVPRChuCN3CnZxKDGDDVixLI92fwjyunfJgAZFXIRvVEjdHsOfvmU5Z-EwBNil5ZeMJQ7vgv8eqs7xO4MIwo4j~65L3Oe~BToMRNBx6E1cdPYDNCPg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>In a complex pressurized water diversion project (WDP), the combined optimal operation of multiple hydraulic facilities is computationally expensive owing to the requirement of massive mathematical simulation model runs. A parallel multi-objective optimization based on adaptive surrogate model (PMO-ASMO) was proposed in this study to alleviate the computational burden while maintaining its effectiveness. At the simulation level, an adaptive surrogate model was established, while a paralle","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"70 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141531530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<div><div data- reveal-group-><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.224/1/m_hydro-d-23-00224gf01.png?Expires=1722776541&Signature=WUW83ZFchbelEpC~92sxSdnRMa9uT2LOf9eonalq81ChFe-N-j-Vqx-JFPu3xykBHFSaO67QRTHfWGOnXXxzOKJluLqPpyK0~F~RUa20tz~x7BvayLefVcuLsw8nIY~YgCUMzs-U1XcZZbq92bL7EEjluqvefzIOp-f4dFwHsBwYS89zE-QGkjkVF58vi8CXv5U6Aj7lmy-1GPTdBtBNp4~IU1yp5qctP5q4vaDmmVCGdV8YAEqSHCTYzn6JXYWmtmLywQjOtixtgtePULNM-IPmUr7RFhvYfO5rJMtiEUVvD7OYfy7EaRX~8uP2HnwmjgvViRI5xmThUkBioXfWXA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydro-d-23-00224gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.224/1/m_hydro-d-23-00224gf01.png?Expires=1722776541&Signature=WUW83ZFchbelEpC~92sxSdnRMa9uT2LOf9eonalq81ChFe-N-j-Vqx-JFPu3xykBHFSaO67QRTHfWGOnXXxzOKJluLqPpyK0~F~RUa20tz~x7BvayLefVcuLsw8nIY~YgCUMzs-U1XcZZbq92bL7EEjluqvefzIOp-f4dFwHsBwYS89zE-QGkjkVF58vi8CXv5U6Aj7lmy-1GPTdBtBNp4~IU1yp5qctP5q4vaDmmVCGdV8YAEqSHCTYzn6JXYWmtmLywQjOtixtgtePULNM-IPmUr7RFhvYfO5rJMtiEUVvD7OYfy7EaRX~8uP2HnwmjgvViRI5xmThUkBioXfWXA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div></div><div content- data-reveal="data-reveal"><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.224/1/m_hydro-d-23-00224gf01.png?Expires=1722776541&Signature=WUW83ZFchbelEpC~92sxSdnRMa9uT2LOf9eonalq81ChFe-N-j-Vqx-JFPu3xykBHFSaO67QRTHfWGOnXXxzOKJluLqPpyK0~F~RUa20tz~x7BvayLefVcuLsw8nIY~YgCUMzs-U1XcZZbq92bL7EEjluqvefzIOp-f4dFwHsBwYS89zE-QGkjkVF58vi8CXv5U6Aj7lmy-1GPTdBtBNp4~IU1yp5qctP5q4vaDmmVCGdV8YAEqSHCTYzn6JXYWmtmLywQjOtixtgtePULNM-IPmUr7RFhvYfO5rJMtiEUVvD7OYfy7EaRX~8uP2HnwmjgvViRI5xmThUkBioXfWXA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydro-d-23-00224gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.224/1/m_hydro-d-23-00224gf01.png?Expires=1722776541&Signature=WUW83ZFchbelEpC~92sxSdnRMa9uT2LOf9eonalq81ChFe-N-j-Vqx-JFPu3xykBHFSaO67QRTHfWGOnXXxzOKJluLqPpyK0~F~RUa20tz~x7BvayLefVcuLsw8nIY~YgCUMzs-U1XcZZbq92bL7EEjluqvefzIOp-f4dFwHsBwYS89zE-QGkjkVF58vi8CXv5U6Aj7lmy-1GPTdBtBNp4~IU1yp5qctP5q4vaDmmVCGdV8YAEqSHCTYzn6JXYWmtmLywQjOtixtgtePULNM-IPmUr7RFhvYfO5rJMtiEUVvD7OYfy7EaRX~8uP2HnwmjgvViRI5xmThUkBioXfWXA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Rainfall has a dominant role in rainfall-runoff models, with the rendering of these models depending on the data accuracy and on the way that rainfall is spatially allocated. The research proposes a methodological framework where a genetic algorithm (GA)-based method responsible for the spatial distribution of gauge observations at the basin scale is coupled with the HEC-HMS hydrological model to produce simulated discharges of high accuracy. The custom-developed GA is used to divide a 2D
{"title":"A genetic algorithm's novel rainfall distribution method for optimized hydrological modeling at basin scales","authors":"Charalampos Skoulikaris, Nikolaos Nagkoulis","doi":"10.2166/hydro.2024.224","DOIUrl":"https://doi.org/10.2166/hydro.2024.224","url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.224/1/m_hydro-d-23-00224gf01.png?Expires=1722776541&Signature=WUW83ZFchbelEpC~92sxSdnRMa9uT2LOf9eonalq81ChFe-N-j-Vqx-JFPu3xykBHFSaO67QRTHfWGOnXXxzOKJluLqPpyK0~F~RUa20tz~x7BvayLefVcuLsw8nIY~YgCUMzs-U1XcZZbq92bL7EEjluqvefzIOp-f4dFwHsBwYS89zE-QGkjkVF58vi8CXv5U6Aj7lmy-1GPTdBtBNp4~IU1yp5qctP5q4vaDmmVCGdV8YAEqSHCTYzn6JXYWmtmLywQjOtixtgtePULNM-IPmUr7RFhvYfO5rJMtiEUVvD7OYfy7EaRX~8uP2HnwmjgvViRI5xmThUkBioXfWXA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00224gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.224/1/m_hydro-d-23-00224gf01.png?Expires=1722776541&Signature=WUW83ZFchbelEpC~92sxSdnRMa9uT2LOf9eonalq81ChFe-N-j-Vqx-JFPu3xykBHFSaO67QRTHfWGOnXXxzOKJluLqPpyK0~F~RUa20tz~x7BvayLefVcuLsw8nIY~YgCUMzs-U1XcZZbq92bL7EEjluqvefzIOp-f4dFwHsBwYS89zE-QGkjkVF58vi8CXv5U6Aj7lmy-1GPTdBtBNp4~IU1yp5qctP5q4vaDmmVCGdV8YAEqSHCTYzn6JXYWmtmLywQjOtixtgtePULNM-IPmUr7RFhvYfO5rJMtiEUVvD7OYfy7EaRX~8uP2HnwmjgvViRI5xmThUkBioXfWXA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.224/1/m_hydro-d-23-00224gf01.png?Expires=1722776541&Signature=WUW83ZFchbelEpC~92sxSdnRMa9uT2LOf9eonalq81ChFe-N-j-Vqx-JFPu3xykBHFSaO67QRTHfWGOnXXxzOKJluLqPpyK0~F~RUa20tz~x7BvayLefVcuLsw8nIY~YgCUMzs-U1XcZZbq92bL7EEjluqvefzIOp-f4dFwHsBwYS89zE-QGkjkVF58vi8CXv5U6Aj7lmy-1GPTdBtBNp4~IU1yp5qctP5q4vaDmmVCGdV8YAEqSHCTYzn6JXYWmtmLywQjOtixtgtePULNM-IPmUr7RFhvYfO5rJMtiEUVvD7OYfy7EaRX~8uP2HnwmjgvViRI5xmThUkBioXfWXA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00224gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.224/1/m_hydro-d-23-00224gf01.png?Expires=1722776541&Signature=WUW83ZFchbelEpC~92sxSdnRMa9uT2LOf9eonalq81ChFe-N-j-Vqx-JFPu3xykBHFSaO67QRTHfWGOnXXxzOKJluLqPpyK0~F~RUa20tz~x7BvayLefVcuLsw8nIY~YgCUMzs-U1XcZZbq92bL7EEjluqvefzIOp-f4dFwHsBwYS89zE-QGkjkVF58vi8CXv5U6Aj7lmy-1GPTdBtBNp4~IU1yp5qctP5q4vaDmmVCGdV8YAEqSHCTYzn6JXYWmtmLywQjOtixtgtePULNM-IPmUr7RFhvYfO5rJMtiEUVvD7OYfy7EaRX~8uP2HnwmjgvViRI5xmThUkBioXfWXA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Rainfall has a dominant role in rainfall-runoff models, with the rendering of these models depending on the data accuracy and on the way that rainfall is spatially allocated. The research proposes a methodological framework where a genetic algorithm (GA)-based method responsible for the spatial distribution of gauge observations at the basin scale is coupled with the HEC-HMS hydrological model to produce simulated discharges of high accuracy. The custom-developed GA is used to divide a 2D","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"55 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141531487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<div><div data- reveal-group-><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.024/1/m_hydro-d-24-00024gf01.png?Expires=1722781167&Signature=N5VQw4Eum39XC3hFS958ezRAf9KJFwtstGhnPb93-s4JPZvrMlAPMgNyRgprnDW2zp-TETZTkv1aj5uZoTJ--w1wr9uCKQvy1Mvnl1HnDXAD8RFz2FbiobJRrjl-Zw1~Wgh5z7fcRMrchkm6ER6AJt44oQFPz1Yv-wWW2Zo5POJ1E14-KwxqrUEZFFCMBnNLKaCxgNTLjmBKV8hT4FxVI2K9giHdHunJnLu0Y1NqZNZekWgOu5zXhxlEnSD~MF1aC~5L-W2LblDHQxVvmdhlBHg~H2qtcW8ByXLpnoKkCDjEfxxRK8xl4A9NmTPIUBQZCoj8MbJ3b7DouJMB6pSGnQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydro-d-24-00024gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.024/1/m_hydro-d-24-00024gf01.png?Expires=1722781167&Signature=N5VQw4Eum39XC3hFS958ezRAf9KJFwtstGhnPb93-s4JPZvrMlAPMgNyRgprnDW2zp-TETZTkv1aj5uZoTJ--w1wr9uCKQvy1Mvnl1HnDXAD8RFz2FbiobJRrjl-Zw1~Wgh5z7fcRMrchkm6ER6AJt44oQFPz1Yv-wWW2Zo5POJ1E14-KwxqrUEZFFCMBnNLKaCxgNTLjmBKV8hT4FxVI2K9giHdHunJnLu0Y1NqZNZekWgOu5zXhxlEnSD~MF1aC~5L-W2LblDHQxVvmdhlBHg~H2qtcW8ByXLpnoKkCDjEfxxRK8xl4A9NmTPIUBQZCoj8MbJ3b7DouJMB6pSGnQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div></div><div content- data-reveal="data-reveal"><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.024/1/m_hydro-d-24-00024gf01.png?Expires=1722781167&Signature=N5VQw4Eum39XC3hFS958ezRAf9KJFwtstGhnPb93-s4JPZvrMlAPMgNyRgprnDW2zp-TETZTkv1aj5uZoTJ--w1wr9uCKQvy1Mvnl1HnDXAD8RFz2FbiobJRrjl-Zw1~Wgh5z7fcRMrchkm6ER6AJt44oQFPz1Yv-wWW2Zo5POJ1E14-KwxqrUEZFFCMBnNLKaCxgNTLjmBKV8hT4FxVI2K9giHdHunJnLu0Y1NqZNZekWgOu5zXhxlEnSD~MF1aC~5L-W2LblDHQxVvmdhlBHg~H2qtcW8ByXLpnoKkCDjEfxxRK8xl4A9NmTPIUBQZCoj8MbJ3b7DouJMB6pSGnQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydro-d-24-00024gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.024/1/m_hydro-d-24-00024gf01.png?Expires=1722781167&Signature=N5VQw4Eum39XC3hFS958ezRAf9KJFwtstGhnPb93-s4JPZvrMlAPMgNyRgprnDW2zp-TETZTkv1aj5uZoTJ--w1wr9uCKQvy1Mvnl1HnDXAD8RFz2FbiobJRrjl-Zw1~Wgh5z7fcRMrchkm6ER6AJt44oQFPz1Yv-wWW2Zo5POJ1E14-KwxqrUEZFFCMBnNLKaCxgNTLjmBKV8hT4FxVI2K9giHdHunJnLu0Y1NqZNZekWgOu5zXhxlEnSD~MF1aC~5L-W2LblDHQxVvmdhlBHg~H2qtcW8ByXLpnoKkCDjEfxxRK8xl4A9NmTPIUBQZCoj8MbJ3b7DouJMB6pSGnQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Urban floods pose a significant threat to human communities, making its prediction essential for comprehensive flood risk assessment and the formulation of effective resource allocation strategies. Data-driven deep learning approaches have gained traction in urban emergency flood prediction, addressing the efficiency constraints of physical models. However, the spatial structure of rainfall, which has a profound influence on urban flooding, is often overlooked in many deep learning invest
{"title":"Advancing rapid urban flood prediction: a spatiotemporal deep learning approach with uneven rainfall and attention mechanism","authors":"Yu Shao, Jiarui Chen, Tuqiao Zhang, Tingchao Yu, Shipeng Chu","doi":"10.2166/hydro.2024.024","DOIUrl":"https://doi.org/10.2166/hydro.2024.024","url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.024/1/m_hydro-d-24-00024gf01.png?Expires=1722781167&Signature=N5VQw4Eum39XC3hFS958ezRAf9KJFwtstGhnPb93-s4JPZvrMlAPMgNyRgprnDW2zp-TETZTkv1aj5uZoTJ--w1wr9uCKQvy1Mvnl1HnDXAD8RFz2FbiobJRrjl-Zw1~Wgh5z7fcRMrchkm6ER6AJt44oQFPz1Yv-wWW2Zo5POJ1E14-KwxqrUEZFFCMBnNLKaCxgNTLjmBKV8hT4FxVI2K9giHdHunJnLu0Y1NqZNZekWgOu5zXhxlEnSD~MF1aC~5L-W2LblDHQxVvmdhlBHg~H2qtcW8ByXLpnoKkCDjEfxxRK8xl4A9NmTPIUBQZCoj8MbJ3b7DouJMB6pSGnQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-24-00024gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.024/1/m_hydro-d-24-00024gf01.png?Expires=1722781167&Signature=N5VQw4Eum39XC3hFS958ezRAf9KJFwtstGhnPb93-s4JPZvrMlAPMgNyRgprnDW2zp-TETZTkv1aj5uZoTJ--w1wr9uCKQvy1Mvnl1HnDXAD8RFz2FbiobJRrjl-Zw1~Wgh5z7fcRMrchkm6ER6AJt44oQFPz1Yv-wWW2Zo5POJ1E14-KwxqrUEZFFCMBnNLKaCxgNTLjmBKV8hT4FxVI2K9giHdHunJnLu0Y1NqZNZekWgOu5zXhxlEnSD~MF1aC~5L-W2LblDHQxVvmdhlBHg~H2qtcW8ByXLpnoKkCDjEfxxRK8xl4A9NmTPIUBQZCoj8MbJ3b7DouJMB6pSGnQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.024/1/m_hydro-d-24-00024gf01.png?Expires=1722781167&Signature=N5VQw4Eum39XC3hFS958ezRAf9KJFwtstGhnPb93-s4JPZvrMlAPMgNyRgprnDW2zp-TETZTkv1aj5uZoTJ--w1wr9uCKQvy1Mvnl1HnDXAD8RFz2FbiobJRrjl-Zw1~Wgh5z7fcRMrchkm6ER6AJt44oQFPz1Yv-wWW2Zo5POJ1E14-KwxqrUEZFFCMBnNLKaCxgNTLjmBKV8hT4FxVI2K9giHdHunJnLu0Y1NqZNZekWgOu5zXhxlEnSD~MF1aC~5L-W2LblDHQxVvmdhlBHg~H2qtcW8ByXLpnoKkCDjEfxxRK8xl4A9NmTPIUBQZCoj8MbJ3b7DouJMB6pSGnQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-24-00024gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/6/10.2166_hydro.2024.024/1/m_hydro-d-24-00024gf01.png?Expires=1722781167&Signature=N5VQw4Eum39XC3hFS958ezRAf9KJFwtstGhnPb93-s4JPZvrMlAPMgNyRgprnDW2zp-TETZTkv1aj5uZoTJ--w1wr9uCKQvy1Mvnl1HnDXAD8RFz2FbiobJRrjl-Zw1~Wgh5z7fcRMrchkm6ER6AJt44oQFPz1Yv-wWW2Zo5POJ1E14-KwxqrUEZFFCMBnNLKaCxgNTLjmBKV8hT4FxVI2K9giHdHunJnLu0Y1NqZNZekWgOu5zXhxlEnSD~MF1aC~5L-W2LblDHQxVvmdhlBHg~H2qtcW8ByXLpnoKkCDjEfxxRK8xl4A9NmTPIUBQZCoj8MbJ3b7DouJMB6pSGnQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Urban floods pose a significant threat to human communities, making its prediction essential for comprehensive flood risk assessment and the formulation of effective resource allocation strategies. Data-driven deep learning approaches have gained traction in urban emergency flood prediction, addressing the efficiency constraints of physical models. However, the spatial structure of rainfall, which has a profound influence on urban flooding, is often overlooked in many deep learning invest","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"98 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141531529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<div><div data- reveal-group-><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/5/10.2166_hydro.2024.196/1/m_hydro-d-23-00196gf01.png?Expires=1720086512&Signature=VNdAXZpk4liIQy-2g49DLM1buWS0bh-Rlxj7fxEFDcTtBAlBqRR3j4J0qq8I00odrFVO3Q1IxOK8NyvEQ4tsP~ASPku6wrd9HFUJuePzyRsGV5ZhMQYLcRV4Xm8-Y4mXjlNJzvgQSuSlDvTRS-NbMWjOFQbNM7KjAc1SIuxAq6YwzV2iCTgUDUy-WEv1Fq5otEyLiHLKd1sW2gBBnS6M-f2cS1hiAoe02YY7zOTAlR2VXXBASuYbRp80AOeMkihdC1shOj7VM5T4pIMpVoajlP0-YsehwU5SE88fxAKRnlxwt9ZigvLdcTda4~UmX8G~wIENx6gpLiwreYd5fIVRVg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydro-d-23-00196gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/5/10.2166_hydro.2024.196/1/m_hydro-d-23-00196gf01.png?Expires=1720086512&Signature=VNdAXZpk4liIQy-2g49DLM1buWS0bh-Rlxj7fxEFDcTtBAlBqRR3j4J0qq8I00odrFVO3Q1IxOK8NyvEQ4tsP~ASPku6wrd9HFUJuePzyRsGV5ZhMQYLcRV4Xm8-Y4mXjlNJzvgQSuSlDvTRS-NbMWjOFQbNM7KjAc1SIuxAq6YwzV2iCTgUDUy-WEv1Fq5otEyLiHLKd1sW2gBBnS6M-f2cS1hiAoe02YY7zOTAlR2VXXBASuYbRp80AOeMkihdC1shOj7VM5T4pIMpVoajlP0-YsehwU5SE88fxAKRnlxwt9ZigvLdcTda4~UmX8G~wIENx6gpLiwreYd5fIVRVg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div></div><div content- data-reveal="data-reveal"><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/5/10.2166_hydro.2024.196/1/m_hydro-d-23-00196gf01.png?Expires=1720086512&Signature=VNdAXZpk4liIQy-2g49DLM1buWS0bh-Rlxj7fxEFDcTtBAlBqRR3j4J0qq8I00odrFVO3Q1IxOK8NyvEQ4tsP~ASPku6wrd9HFUJuePzyRsGV5ZhMQYLcRV4Xm8-Y4mXjlNJzvgQSuSlDvTRS-NbMWjOFQbNM7KjAc1SIuxAq6YwzV2iCTgUDUy-WEv1Fq5otEyLiHLKd1sW2gBBnS6M-f2cS1hiAoe02YY7zOTAlR2VXXBASuYbRp80AOeMkihdC1shOj7VM5T4pIMpVoajlP0-YsehwU5SE88fxAKRnlxwt9ZigvLdcTda4~UmX8G~wIENx6gpLiwreYd5fIVRVg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydro-d-23-00196gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/5/10.2166_hydro.2024.196/1/m_hydro-d-23-00196gf01.png?Expires=1720086512&Signature=VNdAXZpk4liIQy-2g49DLM1buWS0bh-Rlxj7fxEFDcTtBAlBqRR3j4J0qq8I00odrFVO3Q1IxOK8NyvEQ4tsP~ASPku6wrd9HFUJuePzyRsGV5ZhMQYLcRV4Xm8-Y4mXjlNJzvgQSuSlDvTRS-NbMWjOFQbNM7KjAc1SIuxAq6YwzV2iCTgUDUy-WEv1Fq5otEyLiHLKd1sW2gBBnS6M-f2cS1hiAoe02YY7zOTAlR2VXXBASuYbRp80AOeMkihdC1shOj7VM5T4pIMpVoajlP0-YsehwU5SE88fxAKRnlxwt9ZigvLdcTda4~UmX8G~wIENx6gpLiwreYd5fIVRVg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Long-term inflow forecasting is extremely important for reasonable dispatch schedules of hydropower stations and efficient utilization plans of water resources. In this paper, a novel forecast framework, meteorological data long short-term memory neural network (M-LSTM), which uses the meteorological dataset as input and adopts LSTM, is proposed for monthly inflow forecasting. First, the meteorological dataset, which provides more effective information for runoff prediction, is obtained b
{"title":"Long-term inflow forecast using meteorological data based on long short-term memory neural networks","authors":"Hongye Zhao, Shengli Liao, Yitong Song, Zhou Fang, Xiangyu Ma, BinBin Zhou","doi":"10.2166/hydro.2024.196","DOIUrl":"https://doi.org/10.2166/hydro.2024.196","url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/5/10.2166_hydro.2024.196/1/m_hydro-d-23-00196gf01.png?Expires=1720086512&Signature=VNdAXZpk4liIQy-2g49DLM1buWS0bh-Rlxj7fxEFDcTtBAlBqRR3j4J0qq8I00odrFVO3Q1IxOK8NyvEQ4tsP~ASPku6wrd9HFUJuePzyRsGV5ZhMQYLcRV4Xm8-Y4mXjlNJzvgQSuSlDvTRS-NbMWjOFQbNM7KjAc1SIuxAq6YwzV2iCTgUDUy-WEv1Fq5otEyLiHLKd1sW2gBBnS6M-f2cS1hiAoe02YY7zOTAlR2VXXBASuYbRp80AOeMkihdC1shOj7VM5T4pIMpVoajlP0-YsehwU5SE88fxAKRnlxwt9ZigvLdcTda4~UmX8G~wIENx6gpLiwreYd5fIVRVg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00196gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/5/10.2166_hydro.2024.196/1/m_hydro-d-23-00196gf01.png?Expires=1720086512&Signature=VNdAXZpk4liIQy-2g49DLM1buWS0bh-Rlxj7fxEFDcTtBAlBqRR3j4J0qq8I00odrFVO3Q1IxOK8NyvEQ4tsP~ASPku6wrd9HFUJuePzyRsGV5ZhMQYLcRV4Xm8-Y4mXjlNJzvgQSuSlDvTRS-NbMWjOFQbNM7KjAc1SIuxAq6YwzV2iCTgUDUy-WEv1Fq5otEyLiHLKd1sW2gBBnS6M-f2cS1hiAoe02YY7zOTAlR2VXXBASuYbRp80AOeMkihdC1shOj7VM5T4pIMpVoajlP0-YsehwU5SE88fxAKRnlxwt9ZigvLdcTda4~UmX8G~wIENx6gpLiwreYd5fIVRVg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/5/10.2166_hydro.2024.196/1/m_hydro-d-23-00196gf01.png?Expires=1720086512&Signature=VNdAXZpk4liIQy-2g49DLM1buWS0bh-Rlxj7fxEFDcTtBAlBqRR3j4J0qq8I00odrFVO3Q1IxOK8NyvEQ4tsP~ASPku6wrd9HFUJuePzyRsGV5ZhMQYLcRV4Xm8-Y4mXjlNJzvgQSuSlDvTRS-NbMWjOFQbNM7KjAc1SIuxAq6YwzV2iCTgUDUy-WEv1Fq5otEyLiHLKd1sW2gBBnS6M-f2cS1hiAoe02YY7zOTAlR2VXXBASuYbRp80AOeMkihdC1shOj7VM5T4pIMpVoajlP0-YsehwU5SE88fxAKRnlxwt9ZigvLdcTda4~UmX8G~wIENx6gpLiwreYd5fIVRVg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00196gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/5/10.2166_hydro.2024.196/1/m_hydro-d-23-00196gf01.png?Expires=1720086512&Signature=VNdAXZpk4liIQy-2g49DLM1buWS0bh-Rlxj7fxEFDcTtBAlBqRR3j4J0qq8I00odrFVO3Q1IxOK8NyvEQ4tsP~ASPku6wrd9HFUJuePzyRsGV5ZhMQYLcRV4Xm8-Y4mXjlNJzvgQSuSlDvTRS-NbMWjOFQbNM7KjAc1SIuxAq6YwzV2iCTgUDUy-WEv1Fq5otEyLiHLKd1sW2gBBnS6M-f2cS1hiAoe02YY7zOTAlR2VXXBASuYbRp80AOeMkihdC1shOj7VM5T4pIMpVoajlP0-YsehwU5SE88fxAKRnlxwt9ZigvLdcTda4~UmX8G~wIENx6gpLiwreYd5fIVRVg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>Long-term inflow forecasting is extremely important for reasonable dispatch schedules of hydropower stations and efficient utilization plans of water resources. In this paper, a novel forecast framework, meteorological data long short-term memory neural network (M-LSTM), which uses the meteorological dataset as input and adopts LSTM, is proposed for monthly inflow forecasting. First, the meteorological dataset, which provides more effective information for runoff prediction, is obtained b","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"78 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<div><div data- reveal-group-><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/3/10.2166_hydro.2024.247/2/m_hydro-d-23-00247gf01.png?Expires=1714738699&Signature=PJnFubWAYWjMkyJaokTkc4qSRYjm4eWNYjpTIP1GH7R~jo7MfFn-Ls8KecoZNPNIt0GhaJkoFCsLePZzT0-HdoZDMGyjNAvX9phNB9m226KgoyPpYr54aduvWKES3lKt7u8leKHhTk9bFdnGybok1Q~Y3DbB-ih6JGVuaK3EHfSKV8vtt-ISfa4bR8eNtxOEHMSE8~1H4XA65odwmBqUkLKL6JwywQArhRQLfu1QBk~E5Bv08l6iaDSmFTFrqT1W5vTIIf0L9h2IHhhSphH1LNokg26bxMgDJYgF4EZogjzK56K648SPhhbosgr5bYm-kJm36umew7pShhOMImT0Eg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydro-d-23-00247gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/3/10.2166_hydro.2024.247/2/m_hydro-d-23-00247gf01.png?Expires=1714738699&Signature=PJnFubWAYWjMkyJaokTkc4qSRYjm4eWNYjpTIP1GH7R~jo7MfFn-Ls8KecoZNPNIt0GhaJkoFCsLePZzT0-HdoZDMGyjNAvX9phNB9m226KgoyPpYr54aduvWKES3lKt7u8leKHhTk9bFdnGybok1Q~Y3DbB-ih6JGVuaK3EHfSKV8vtt-ISfa4bR8eNtxOEHMSE8~1H4XA65odwmBqUkLKL6JwywQArhRQLfu1QBk~E5Bv08l6iaDSmFTFrqT1W5vTIIf0L9h2IHhhSphH1LNokg26bxMgDJYgF4EZogjzK56K648SPhhbosgr5bYm-kJm36umew7pShhOMImT0Eg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div></div><div content- data-reveal="data-reveal"><div><img alt="graphic" data-src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/3/10.2166_hydro.2024.247/2/m_hydro-d-23-00247gf01.png?Expires=1714738699&Signature=PJnFubWAYWjMkyJaokTkc4qSRYjm4eWNYjpTIP1GH7R~jo7MfFn-Ls8KecoZNPNIt0GhaJkoFCsLePZzT0-HdoZDMGyjNAvX9phNB9m226KgoyPpYr54aduvWKES3lKt7u8leKHhTk9bFdnGybok1Q~Y3DbB-ih6JGVuaK3EHfSKV8vtt-ISfa4bR8eNtxOEHMSE8~1H4XA65odwmBqUkLKL6JwywQArhRQLfu1QBk~E5Bv08l6iaDSmFTFrqT1W5vTIIf0L9h2IHhhSphH1LNokg26bxMgDJYgF4EZogjzK56K648SPhhbosgr5bYm-kJm36umew7pShhOMImT0Eg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" path-from-xml="hydro-d-23-00247gf01.tif" src="https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/3/10.2166_hydro.2024.247/2/m_hydro-d-23-00247gf01.png?Expires=1714738699&Signature=PJnFubWAYWjMkyJaokTkc4qSRYjm4eWNYjpTIP1GH7R~jo7MfFn-Ls8KecoZNPNIt0GhaJkoFCsLePZzT0-HdoZDMGyjNAvX9phNB9m226KgoyPpYr54aduvWKES3lKt7u8leKHhTk9bFdnGybok1Q~Y3DbB-ih6JGVuaK3EHfSKV8vtt-ISfa4bR8eNtxOEHMSE8~1H4XA65odwmBqUkLKL6JwywQArhRQLfu1QBk~E5Bv08l6iaDSmFTFrqT1W5vTIIf0L9h2IHhhSphH1LNokg26bxMgDJYgF4EZogjzK56K648SPhhbosgr5bYm-kJm36umew7pShhOMImT0Eg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>River bottom tearing scour (RBTS) has a strong effect on the scouring and moulding of channel in the Yellow River. Due to the special forming conditions, complex influencing factors, and limited observed data, it is difficult to predict whether RBTS will occur accurately. By collecting and disposing of the hydrodynamic, sediment, and initial boundary data of 246 flood events related to RBTS in three typical reaches of the Yellow River basin, the correlation between different characteristi
{"title":"Analysis of characteristic index and prediction of river bottom tearing scour in the Yellow River","authors":"Longfei Sun, Yanhui Liu, Yuanjian Wang, Qinghao Dong, Wanjie Zhao","doi":"10.2166/hydro.2024.247","DOIUrl":"https://doi.org/10.2166/hydro.2024.247","url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/3/10.2166_hydro.2024.247/2/m_hydro-d-23-00247gf01.png?Expires=1714738699&Signature=PJnFubWAYWjMkyJaokTkc4qSRYjm4eWNYjpTIP1GH7R~jo7MfFn-Ls8KecoZNPNIt0GhaJkoFCsLePZzT0-HdoZDMGyjNAvX9phNB9m226KgoyPpYr54aduvWKES3lKt7u8leKHhTk9bFdnGybok1Q~Y3DbB-ih6JGVuaK3EHfSKV8vtt-ISfa4bR8eNtxOEHMSE8~1H4XA65odwmBqUkLKL6JwywQArhRQLfu1QBk~E5Bv08l6iaDSmFTFrqT1W5vTIIf0L9h2IHhhSphH1LNokg26bxMgDJYgF4EZogjzK56K648SPhhbosgr5bYm-kJm36umew7pShhOMImT0Eg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00247gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/3/10.2166_hydro.2024.247/2/m_hydro-d-23-00247gf01.png?Expires=1714738699&Signature=PJnFubWAYWjMkyJaokTkc4qSRYjm4eWNYjpTIP1GH7R~jo7MfFn-Ls8KecoZNPNIt0GhaJkoFCsLePZzT0-HdoZDMGyjNAvX9phNB9m226KgoyPpYr54aduvWKES3lKt7u8leKHhTk9bFdnGybok1Q~Y3DbB-ih6JGVuaK3EHfSKV8vtt-ISfa4bR8eNtxOEHMSE8~1H4XA65odwmBqUkLKL6JwywQArhRQLfu1QBk~E5Bv08l6iaDSmFTFrqT1W5vTIIf0L9h2IHhhSphH1LNokg26bxMgDJYgF4EZogjzK56K648SPhhbosgr5bYm-kJm36umew7pShhOMImT0Eg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/3/10.2166_hydro.2024.247/2/m_hydro-d-23-00247gf01.png?Expires=1714738699&Signature=PJnFubWAYWjMkyJaokTkc4qSRYjm4eWNYjpTIP1GH7R~jo7MfFn-Ls8KecoZNPNIt0GhaJkoFCsLePZzT0-HdoZDMGyjNAvX9phNB9m226KgoyPpYr54aduvWKES3lKt7u8leKHhTk9bFdnGybok1Q~Y3DbB-ih6JGVuaK3EHfSKV8vtt-ISfa4bR8eNtxOEHMSE8~1H4XA65odwmBqUkLKL6JwywQArhRQLfu1QBk~E5Bv08l6iaDSmFTFrqT1W5vTIIf0L9h2IHhhSphH1LNokg26bxMgDJYgF4EZogjzK56K648SPhhbosgr5bYm-kJm36umew7pShhOMImT0Eg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"hydro-d-23-00247gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jh/26/3/10.2166_hydro.2024.247/2/m_hydro-d-23-00247gf01.png?Expires=1714738699&Signature=PJnFubWAYWjMkyJaokTkc4qSRYjm4eWNYjpTIP1GH7R~jo7MfFn-Ls8KecoZNPNIt0GhaJkoFCsLePZzT0-HdoZDMGyjNAvX9phNB9m226KgoyPpYr54aduvWKES3lKt7u8leKHhTk9bFdnGybok1Q~Y3DbB-ih6JGVuaK3EHfSKV8vtt-ISfa4bR8eNtxOEHMSE8~1H4XA65odwmBqUkLKL6JwywQArhRQLfu1QBk~E5Bv08l6iaDSmFTFrqT1W5vTIIf0L9h2IHhhSphH1LNokg26bxMgDJYgF4EZogjzK56K648SPhhbosgr5bYm-kJm36umew7pShhOMImT0Eg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>River bottom tearing scour (RBTS) has a strong effect on the scouring and moulding of channel in the Yellow River. Due to the special forming conditions, complex influencing factors, and limited observed data, it is difficult to predict whether RBTS will occur accurately. By collecting and disposing of the hydrodynamic, sediment, and initial boundary data of 246 flood events related to RBTS in three typical reaches of the Yellow River basin, the correlation between different characteristi","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"44 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Population movement, such as commuting, can affect water supply pressure and efficiency in modern cities. However, there is a gap in the research concerning the relationship between water use and population mobility, which is of great significance for urban sustainable development. In this study, we analyzed the spatial–temporal dynamics of the population and its underlying mechanisms, using multi-source geospatial big data, including Baidu heat maps (BHMs), land use parcels, and point of interest. Combined with water consumption, sewage volume, and river depth data, the impact of population dynamics on water use was investigated. The results showed that there were obvious differences in population dynamics between weekdays and weekends with a ratio of 1.11 for the total population. Spatially, the population concentration was mainly observed in areas associated with enterprises, industries, shopping, and leisure activities during the daytime, while at nighttime, it primarily centered around residential areas. Moreover, the population showed a significant impact on water use, resulting in co-periods of 24 h and 7 days, and the water consumption as well as the wastewater production were observed to be proportional to the population density. This study can offer valuable implications for urban water resource allocation strategies.
{"title":"Understanding the impact of population dynamics on water use utilizing multi-source big data","authors":"Guihuan Zhou, Zhanjie Li, Wei Wang, Qianyang Wang, Jingshan Yu","doi":"10.2166/hydro.2024.179","DOIUrl":"https://doi.org/10.2166/hydro.2024.179","url":null,"abstract":"<p>Population movement, such as commuting, can affect water supply pressure and efficiency in modern cities. However, there is a gap in the research concerning the relationship between water use and population mobility, which is of great significance for urban sustainable development. In this study, we analyzed the spatial–temporal dynamics of the population and its underlying mechanisms, using multi-source geospatial big data, including Baidu heat maps (BHMs), land use parcels, and point of interest. Combined with water consumption, sewage volume, and river depth data, the impact of population dynamics on water use was investigated. The results showed that there were obvious differences in population dynamics between weekdays and weekends with a ratio of 1.11 for the total population. Spatially, the population concentration was mainly observed in areas associated with enterprises, industries, shopping, and leisure activities during the daytime, while at nighttime, it primarily centered around residential areas. Moreover, the population showed a significant impact on water use, resulting in co-periods of 24 h and 7 days, and the water consumption as well as the wastewater production were observed to be proportional to the population density. This study can offer valuable implications for urban water resource allocation strategies.</p>","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"57 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum: Journal of Hydroinformatics 1 January 2024; 26 (1): 304–318. Experimental and numerical investigation of Engineered Injection and Extraction (EIE) induced with three-dimensional flow field. Farsana M. Asha, N. Sajikumar, E. A. Subaida. https://doi.org/10.2166/hydro.2023.427","authors":"","doi":"10.2166/hydro.2024.002","DOIUrl":"https://doi.org/10.2166/hydro.2024.002","url":null,"abstract":"Abstract not available","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"108 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140560812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum: Journal of Hydroinformatics 25 (6), 2643–2659: Enhanced forecasting of multi-step ahead daily soil temperature using advanced hybrid vote algorithm-based tree models, Javad Hatamiafkoueieh, Salim Heddam, Saeed Khoshtinat, Solmaz Khazaei, Abdol-Baset Osmani, Ebrahim Nohani, Mohammad Kiomarzi, Ehsan Sharafi and John Tiefenbacher, https://doi.org/10.2166/hydro.2023.188","authors":"","doi":"10.2166/hydro.2024.001","DOIUrl":"https://doi.org/10.2166/hydro.2024.001","url":null,"abstract":"Abstract not available","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"45 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140323176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gregory Ewing, Carlos Erazo Ramirez, Ashani Vaidya, Ibrahim Demir
A recent trend in hydroinformatics has been the growing number of data, models, and cyber tools, which are web accessible, each aiming to improve common research tasks in hydrology through web technologies. Coupling web-based models and tools holds great promise for an integrated environment that can facilitate community participation, collaboration, and scientific replication. There are many examples of server-side, hydroinformatics resource coupling, where a common standard serves as an interface. Yet, there are few, if any, examples of client-side resource coupling, particularly cases where a common specification is employed. Toward this end, we implemented the basic model interface (BMI) specification in the JavaScript programing language, the most widely used programing language on the web. By using BMI, we coupled two client-side hydrological applications (HydroLang and HLM-Web) to perform rainfall–runoff simulations of historical events with rainfall data and a client-side hydrological model as a case study demonstration. Through this process, we present how a common and often tedious task – the coupling of two independent web resources – can be made easier through the adoption of a common standard. Furthermore, applying the standard has facilitated a step toward the possibility of client-side ‘Model as a Service’ for hydrological models.
{"title":"Client-side web-based model coupling using basic model interface for hydrology and water resources","authors":"Gregory Ewing, Carlos Erazo Ramirez, Ashani Vaidya, Ibrahim Demir","doi":"10.2166/hydro.2024.212","DOIUrl":"https://doi.org/10.2166/hydro.2024.212","url":null,"abstract":"<p>A recent trend in hydroinformatics has been the growing number of data, models, and cyber tools, which are web accessible, each aiming to improve common research tasks in hydrology through web technologies. Coupling web-based models and tools holds great promise for an integrated environment that can facilitate community participation, collaboration, and scientific replication. There are many examples of server-side, hydroinformatics resource coupling, where a common standard serves as an interface. Yet, there are few, if any, examples of client-side resource coupling, particularly cases where a common specification is employed. Toward this end, we implemented the basic model interface (BMI) specification in the JavaScript programing language, the most widely used programing language on the web. By using BMI, we coupled two client-side hydrological applications (HydroLang and HLM-Web) to perform rainfall–runoff simulations of historical events with rainfall data and a client-side hydrological model as a case study demonstration. Through this process, we present how a common and often tedious task – the coupling of two independent web resources – can be made easier through the adoption of a common standard. Furthermore, applying the standard has facilitated a step toward the possibility of client-side ‘Model as a Service’ for hydrological models.</p>","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"18 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140036349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}