{"title":"Abax: Extracting Mathematical Formulas from Chart Images Using Spatial Pixel Information","authors":"Michail S. Alexiou, Nikolaos G. Bourbakis","doi":"10.1142/s0218213024500076","DOIUrl":null,"url":null,"abstract":"<p>Current state-of-the-art techniques in 2D chart analysis primarily emphasize the recognition of textual information as a means of comprehending and summarizing chart contents. However, the effective analysis and understanding of information embedded in chart images depends on accurate reverse-engineering of the behavior of depicted variables. In this paper, we propose a methodology, named Abax, as an initial study for recognizing and approximating the mathematical functions that describe the behavior of variables illustrated in chart images, particularly those containing curves. Abax is focused on approximating the values of function parameters using spatial pixel information derived from the identified keypoints of each curve. Qualitative results of the described method are presented as a proof of concept, demonstrating accurate extraction of information from fives types of functions: linear, polynomial, asymptotic, sinusoidal and arbitrary.</p>","PeriodicalId":50280,"journal":{"name":"International Journal on Artificial Intelligence Tools","volume":"17 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Artificial Intelligence Tools","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0218213024500076","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Current state-of-the-art techniques in 2D chart analysis primarily emphasize the recognition of textual information as a means of comprehending and summarizing chart contents. However, the effective analysis and understanding of information embedded in chart images depends on accurate reverse-engineering of the behavior of depicted variables. In this paper, we propose a methodology, named Abax, as an initial study for recognizing and approximating the mathematical functions that describe the behavior of variables illustrated in chart images, particularly those containing curves. Abax is focused on approximating the values of function parameters using spatial pixel information derived from the identified keypoints of each curve. Qualitative results of the described method are presented as a proof of concept, demonstrating accurate extraction of information from fives types of functions: linear, polynomial, asymptotic, sinusoidal and arbitrary.
期刊介绍:
The International Journal on Artificial Intelligence Tools (IJAIT) provides an interdisciplinary forum in which AI scientists and professionals can share their research results and report new advances on AI tools or tools that use AI. Tools refer to architectures, languages or algorithms, which constitute the means connecting theory with applications. So, IJAIT is a medium for promoting general and/or special purpose tools, which are very important for the evolution of science and manipulation of knowledge. IJAIT can also be used as a test ground for new AI tools.
Topics covered by IJAIT include but are not limited to: AI in Bioinformatics, AI for Service Engineering, AI for Software Engineering, AI for Ubiquitous Computing, AI for Web Intelligence Applications, AI Parallel Processing Tools (hardware/software), AI Programming Languages, AI Tools for CAD and VLSI Analysis/Design/Testing, AI Tools for Computer Vision and Speech Understanding, AI Tools for Multimedia, Cognitive Informatics, Data Mining and Machine Learning Tools, Heuristic and AI Planning Strategies and Tools, Image Understanding, Integrated/Hybrid AI Approaches, Intelligent System Architectures, Knowledge-Based/Expert Systems, Knowledge Management and Processing Tools, Knowledge Representation Languages, Natural Language Understanding, Neural Networks for AI, Object-Oriented Programming for AI, Reasoning and Evolution of Knowledge Bases, Self-Healing and Autonomous Systems, and Software Engineering for AI.